
sprintf function

int sprintf (char * str, const char * format, ...); <cstdio>

Write formatted data to string

Writes into the array pointed by str a C string consisting on a sequence of data formatted as the
format argument specifies. After the format parameter, the function expects at least as many
additional arguments as specified in format.
This function behaves exactly as printf does, but writing its results to a string instead of stdout.
The size of the array passed as str should be enough to contain the entire formatted string.

Parameters

str
Pointer to an array of char elements where the resulting C string is stored.

format
C string that contains the text to be written to the buffer.
It can optionally contain embedded format tags that are substituted by the values
specified in subsequent argument(s) and formatted as requested.
The number of arguments following the format parameters should at least be as much as
the number of format tags.
The format tags follow this prototype:

%[flags][width][.precision][length]specifier
Where specifier is the most significant one and defines the type and the interpretation of
the value of the coresponding argument:
specifier Output Example
c Character a

d or i Signed decimal integer 392

e Scientific notation (mantise/exponent) using e character 3.9265e+2

E Scientific notation (mantise/exponent) using E character 3.9265E+2

f Decimal floating point 392.65

g Use the shorter of %e or %f 392.65

G Use the shorter of %E or %f 392.65

o Signed octal 610

s String of characters sample

u Unsigned decimal integer 7235

x Unsigned hexadecimal integer 7fa

X Unsigned hexadecimal integer (capital letters) 7FA

p Pointer address B800:0000

n Nothing printed. The argument must be a pointer to a signed int,
where the number of characters written so far is stored.

% A % followed by another % character will write % to the string.

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are
optional and follow these specifications:

flags description

- Left-justify within the given field width; Right justification is the default (see
width sub-specifier).

+ Forces to preceed the result with a plus or minus sign (+ or -) even for positive
numbers. By default, only negative numbers are preceded with a - sign.

(space) If no sign is going to be written, a blank space is inserted before the value.

Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively
for values different than zero.
Used with e, E and f, it forces the written output to contain a decimal point even
if no digits would follow. By default, if no digits follow, no decimal point is
written.
Used with g or G the result is the same as with e or E but trailing zeros are not
removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width description

(number)
Minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The value is
not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional integer value
argument preceding the argument that has to be formatted.

.precision description

.number

For integer specifiers (d, i, o, u, x, X): precision specifies the minimum
number of digits to be written. If the value to be written is shorter than this
number, the result is padded with leading zeros. The value is not truncated
even if the result is longer. A precision of 0 means that no character is written
for the value 0.
For e, E and f specifiers: this is the number of digits to be printed after the
decimal point.
For g and G specifiers: This is the maximum number of significant digits to be
printed.
For s: this is the maximum number of characters to be printed. By default all
characters are printed until the ending null character is encountered.
For c type: it has no effect.
When no precision is specified, the default is 1. If the period is specified

without an explicit value for precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional integer
value argument preceding the argument that has to be formatted.

length description

h The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

l
The argument is interpreted as a long int or unsigned long int for integer
specifiers (i, d, o, u, x and X), and as a wide character or wide character string for
specifiers c and s.

L The argument is interpreted as a long double (only applies to floating point
specifiers: e, E, f, g and G).

additional arguments
Depending on the format string, the function may expect a sequence of additional
arguments, each containing one value to be inserted instead of each %-tag specified in the
format parameter, if any. There should be the same number of these arguments as the
number of %-tags that expect a value.

Return Value

On success, the total number of characters written is returned. This count does not include the
additional null-character automatically appended at the end of the string.
On failure, a negative number is returned.

Example

/* sprintf example */
#include <stdio.h>

int main ()
{
 char buffer [50];
 int n, a=5, b=3;
 n=sprintf (buffer, "%d plus %d is %d", a, b, a+b);
 printf ("[%s] is a %d char long string\n",buffer,n);
 return 0;
}

Output:
[5 plus 3 is 8] is a 13 char long string

