sscanf

Formatted string input

The formatted string input functions are the opf@osf the formatted string output functions.
Unlike printt and similar functions, which generate formattetpatjscanf and its friends

parse formatted input. Like the opposite functieegh accepts, as a parameter, a template string
that contains conversion specifiers. In the caseanf and related functions, however, the
conversion specifiers are meant to match patteras input string, such as integers, floating

point numbers, and character sequences, and k®ralues read in variables.

» sscanf:
» Formatted input conversion specifiers:

sscanf

Thesscanf function accepts a string from which to read inpiien, in a manner similar to
printt and related functions, it accepts a templategtimd a series of related arguments. It
tries to match the template string to the strimgrfiwhich it is reading input, using conversion
specifier like those afrintf

Thesscanf function is just like the deprecated parstainf function, except that the first
argument oéscanf specifies a string from which to read, whereasf can only read from
standard input. Reaching the end of the stringestéd as an end-of-file condition.

Here is an example efcanf in action:

sscanf (input_string, "%as %as %as", &str_argl, &st r_arg2, &str_arg3);

If the stringsscanf is scanning overlaps with any of the argumentsxpacted results will
follow, as in the following example. Don't do this!

sscanf (input_string, "%as", &input_string);

Here is a good code example that parses input fih@emiser withsscanf . It prompts the user to
enter three integers separated by whitespace rélagls an arbitrarily long line of text from the
user withgetline . It then checks whether exactly three arguments assigned byscanf . If

the line read does not contain the data requekiedXample, if it contains a floating-point
number or any alphabetic characters), the programispan error message and prompts the user
for three integers again. When the program finadheives exactly the data it was looking for
from the user, it prints out a message acknowlagtiia input, and then prints the three integers.

It is this flexibility of input and great ease @covery from errors that makes the
getline /sscanf combination so vastly superiordeanf alone. Simply put, you should never
usescanf where you can use this combination instead.

#include <stdio.h>

int main()

{
int nbytes = 100;
char *my_string;
int intl, int2, int3;
int args_assigned,;

args_assigned = 0;
while (args_assigned != 3)

puts ("Please enter three integers separated by whitespace.");
my_string = (char *) malloc (nbytes + 1);
getline (&my_string, &nbytes, stdin);
args_assigned = sscanf (my_string, "%d %d %d" , &intl, &int2, &int3);
if (args_assigned != 3)

puts ("\ninput invalid!);

printf ("\nThanks\n%d\n%d\n%d\n", int1, int2, in t3);

return O;

}

Template strings fagscanf and related functions are somewhat more free-tban those for
printt . For example, most conversion specifiers ignoseaceding whitespace. Further, you
cannot specify a precision fescanf conversion specifiers, as you can for thosgrioft

Another important difference betwesstanf andprintf is that the arguments $scanf must
be pointers; this allowsscanf to return values in the variables they point tgol forget to
pass pointers tescanf , you may receive some strange errors, and it9g &aforget to do so;
therefore, this is one of the first things you ddatheck if code containing a call $scanf
begins to go awry.

A sscanf template string can contain any number of any remobwhitespace characters, any
number of ordinary, non-whitespace characters,aaychumber of conversion specifiers starting
with % A whitespace character in the template stringchred zero or more whitespace characters
in the input string. Ordinary, non-whitespace chtees must correspond exactly in the template
string and the input stream; otherwise, a matckingr occurs. Thus, the template stririgo

" matchesfoo" and"foo" , but not'food"

If you create an input conversion specifier witlaahd syntax, or if you don't supply enough
arguments for all the conversion specifiers intdmplate string, your code may do unexpected
things, so be careful. Extra arguments, howeversenply ignored.

Conversion specifiers start with a percent sigraid terminate with a character from the
following table:

Formatted input conversion specifiers

Matches a fixed number of characters. If you sgezimaximum field width (see below),
that is how many characters will be matched; otisrwec matches one character. This
conversion does not append a null character tendeof the text it reads, as does %
conversion. It also does not skip whitespace charsdiut reads precisely the number of
characters it was told to, or generates a matadirgy if it cannot.

Matches an optionally signed decimal integer, doirig the following sequence:

1. An optional plus or minus sign ©r-).
2. One or more decimal digits.

Note thatedand%i are not synonymous fecanf , as they are fagrintf

Matches an optionally signed floating-point numlmentaining the following sequence:

1. An optional plus or minus sign ©r -).
2. A floating-point number in decimal or hexadecimainat.

o The decimal format is a sequence of one or morerddigits,
optionally containing a decimal point characteu@lly .), followed by an
optional exponent part, consisting of a charaetere, an optional plus or
minus sign, and a sequence of decimal digits.

o The hexadecimal format isoa or 0X, followed by a sequence of one or
more hexadecimal digits, optionally containing aid&l point character,
followed by an optional binary-exponent part, cetisg of a character
or P, an optional plus or minus sign, and a sequenceyds.

Same as.
Same as.
Same as.
Same as.

Matches an optionally signed integer, containirggftillowing sequence:

%

1. An optional plus or minus siga ©r -).
2. A string of characters representing an unsignesyet
o If the string begins witlox oroX, the number is assumed to be in
hexadecimal format, and the rest of the string mastain hexadecimal
digits.
o Otherwise, if the string begins with the number is assumed to be in octal
format (base eight), and the rest of the stringtroastain octal digits.
o Otherwise, the number is assumed to be in decionaldt, and the rest of
the string must contain decimal digits.

Note thatedand%i are not synonymous fecanf , as they are fagrintf . You can print
integers in this syntax withvintt by using thet flag character with th@x or %doutput
conversions. (Segrintf.)

Matches a string of non-whitespace characterg&ipssnitial whitespace, but stops when
it meets more whitespace after it has read songethtistores a null character at the end
of the text that it reads, to mark the end of thieg. (SeeString overflows with scanf

for a warning about using this conversion.)

Matches an unsigned integer in hexadecimal forfita. string matched must begin with
0x or0X, and the rest of the string must contain hexadalothgits.

Same as.

Matches a string containing an arbitrary set ofrati@rs. For example,

%12[0123456789] means to read a string with a maximum field wigitli2, containing
characters from the set23456789 -- in other words, twelve decimal digits. An
embedded character means a range of characters;%ham-9] means the same thing
as the last example. Preceding the charactergisdhare brackets with a carel heans
to read a stringot containing the characters listed. Ths2[*0-9] means to read a
twelve-character string not containing any decidigit. (SeeString overflows with
scanf for a warning about using this conversion.)

Matches a percent sign. Does not correspond togameent, and does not permit flags,
field width, or type modifier to be specified (daslow).

In between the percent sigh) @nd the input conversion character, you can daose
combination of the following modifiers, in sequenfidote that the percent sign conversiai)(
doesn't use arguments or modifiers.)

An optional* flag. This flag specifies that a match should zlenbetween the
conversion specifier and an item in the input sirglaut that the value shouhdt then be
assigned to an argument.

An optionala flag, valid with string conversions only. ThisasGNU extension tecanf
that requests allocation of a buffer long enougbatiely store the string that was read.
(SeeString overflows with scanfor information on how to use this flag.)

An optional' flag. This flag specifies that the number read lal grouped according to
the rules currently specified on your system. B@meple, in the United States, this
usually means thatooo will be read as one thousand.

An optional decimal integer that specifies the maxmn field width. Thescanf function
will stop reading characters from the input stresather when this maximum is reached,
or when a non-matching character is read, whicheweres first. Discarded initial
whitespace does not count toward this width; neittoes the null character stored by
string input conversions to mark the end of thegtr

An optional type modifier character from the folliony table. (The default type of the
corresponding argumentitg* for the%sdand%i conversionsynsigned int * for %x
and%X andfloat* for %eand its synonyms. You can use these type modifiers
specify otherwise.)

h
Specifies that the argument to which the value skemlild be assigned is of tygeort
int* Orunsigned short int * . Valid for thessdandvi conversions.

|
For thessdand%i conversions, specifies that the argument to wttiehvalue read should
be assigned is of typeng int * Or unsigned long int * . For theve conversion and

its synonyms, specifies that the argument is oé tigpble *
L

For thessdand%i conversions, specifies that the argument to wttiehvalue read should
be assigned is of typeng long int * or unsigned long long int * . On systems
that do not have extra-long integers, this haséme effect as.

For theve conversion and its synonyms, specifies that tgaraent is of typéng
double *

Il
Same as, for thessdanduwi conversions.
q

Same as, for thesdand%i conversions.
z

Specifies that the argument to which the value stalild be assigned is of tygiee t
(Thesize_t type is used to specify the sizes of blocks of mstmand many functions in
this chapter use it.) Valid for thedand%i conversions.

