would preclude the existence of a fully developed region. There may also exist surfactoroughness effects, circumferential heat flux or temperature variations, widely varying fluid properties, or transition flow conditions. For a complete discussion of these effects, the literature should be consulted [12, 13, 18, 20, 27]. TABLE 8.4 Summary of convection correlations for flow in a circular tube a.d | | w in a circular tube | |---------------------|---| | | Conditions | | (8.19) | Laminar, fully developed | | (8.53) | Laminar, fully developed, uniform q_s'' | | (8.55) | . Laminar, fully developed, uniform T_s | | (8.57) | Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s , $Gz_D = (D/x) Re_D Pr$ | | (8.58) | Laminar, combined entry, $Pr \ge 0.1$, uniform T_{p} $Gz_D = (D/x) Re_D Pr$ | | $(8.20)^b$ | Turbulent, fully developed | | $(8.21)^b$ | Turbulent, fully developed, smooth walls, $3000 \le Re_D \le 5 \times 10^6$ | | (8.60) ^c | Turbulent, fully developed, $0.6 \le Pr \le 160$, $Re_D \ge 10,000$, $(L/D) \ge 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$ | | (8.61) ^c | Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000$, $L/D \ge 10$ | | (8.62) ^c | Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$ | | (8.64) | Liquid metals, turbulent, fully developed, uniform q_s'' , $3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5$, $3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}$, $10^2 \lesssim Re_D Pr \lesssim 10^4$ | | (8.65) | Liquid metals, turbulent, fully developed, uniform T_s , $Re_D Pr \gtrsim 100$ | | | (8.53) (8.55) (8.57) (8.58) $(8.20)^{b}$ $(8.60)^{c}$ $(8.61)^{c}$ $(8.62)^{c}$ (8.64) | ^aProperties in Equations 8.53, 8.55, 8.60, 8.61, 8.62, 8.64, and 8.65 are based on T_m ; properties in Equations 8.19, 8.20, and 8.21 are based on $\overline{T}_m = (T_s + T_m)/2$; properties in Equations 8.57 and 8.58 are based on $\overline{T}_m = (T_{m,i} + T_{m,o})/2$. Equation 8.20 pertains to smooth or rough tubes. Equation 8.21 pertains to smooth tubes. cAs a first approximation, Equations 8.60, 8.61, or 8.62 may be used to evaluate the average Nusselt number Nu_D over the entire tube length, if $(L/D) \gtrsim 10$. The properties should then be evaluated at the average of the mean temperature, $\overline{T}_m = (T_{m,i} + T_{m,o})/2$. ^d For tubes of noncircular cross section, $Re_D \equiv D_\mu u_m / \nu$, $D_k \equiv 4A_c/P$, and $u_m = m/\rho A_c$. Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.