ME-318 Engineering Heat Transfer

Chapter 3 (Part 1)

What you should learn:

- How to construct a thermal analog to an electrical network and quantify the thermal *resistance* of a medium
- To recognize and solve one-dimensional, steady state heat conduction problems in planar and radial systems

 How to quantify conductive and convective network resistances in planar and radial systems

Important Concepts & Equations

- Conductive Thermal Resistance: *kA* $R = \frac{L}{I}$
- Convective Thermal Resistance:
- Series Effective Resistance:
- Parallel Effective Resistance:
- Cylindrical Systems:
	- Heat Equation:
	- Temperature Distribution:

$$
T(r) = T_0 + \frac{\left(T_i - T_0\right)}{\ln\left(\frac{r_i}{r_0}\right)} \ln\left(\frac{r}{r_0}\right)
$$

 $\frac{1}{t} \frac{d}{dt} \left(kr \frac{dT}{dt} \right) = 0$ $rac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) =$

hA $R = \frac{1}{1}$

 $R_{\text{eff}} = R_1 + R_2 + \dots + R_N$

 R_{eff} R_1 R_2 R_N $\frac{1}{\sqrt{2}} = \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{n}$ $\mathbf{1}$ \mathbf{R}_2 $=\frac{1}{2}+\frac{1}{2}+....+$

• Heat Flow Rate: $(T_i - T_0)$ $\overline{}$ \setminus ſ $=\frac{2\pi kL(T_i$ *i i r r* $q = \frac{2\pi kL(T_i - T_i)}{T_i}$ $\overline{0}$ ln 2π

 $\overline{}$ J

 \setminus

kL r r

 $\bigg)$

i

0

1 1

k r_i r_i

"

x $\frac{d}{dx} = \frac{A}{A} \frac{B}{a}$ $R_{t,c}^{\text{''}} = \frac{T_A - T}{T}$ $=\frac{T_A-}{T_A-}$

 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ J

 \setminus

 $\overline{}$ J

 \backslash

 $\ln \left| \frac{r_0}{r} \right|$ J

 $\overline{}$ \setminus

ſ

 $R_{\text{cyl}} = \frac{\sqrt{I_i}}{I}$ $\frac{cyl}{2\pi}$

 $=$

 \setminus

 r_0 *r*

0

i

 $\overline{}$ \setminus

" , ſ - \backslash

0

- Conductive Resistance:
- Spherical Systems:
	- Heat Equation: 2 2 $\frac{1}{2} \frac{d}{dr} \left(kr^2 \frac{dT}{dr} \right) = 0$ $rac{1}{r^2}$ $\frac{d}{dr}$ $\left(kr^2 \frac{dT}{dr}\right) =$
	- Temperature Distribution: $(T_i - T_0)$ $\overline{}$ \setminus ſ \overline{a} $\overline{}$ \setminus $\overline{}$ ſ \overline{a} $=T_0+\frac{(T_i-1)}{T_i}$ r_0 *r* $T(r) = T_0 + \frac{(T_i - T_0)}{(r - r_0)^2}$ $\binom{7}{i}$ $\binom{1}{1}$ 1 1 1 (r) 0 $\frac{1}{0} + \frac{(1+i)(1-i)}{(1-i)}$
	- Heat Flow Rate: $(T_i - T_0)$ $\overline{}$ J \setminus $\overline{}$ \setminus ſ - $=\frac{4\pi k(T_i-T_0)}{2}$ 1 1 4 r_i *r* $q = \frac{4\pi k(T_i - T_i)}{T_i}$
	- Conductive Resistance: $R_{\text{cyl}} = \frac{\sum_i I_i}{\sum_i}$ $\frac{cyl}{4\pi}$ $=$
- Contact thermal resistance