
“Artificial
Intelligence” and
Data Science
statistics and lots of data

Brian D Goodwin, PhD
January 13, 2020

Milwaukee School of Engineering

Image: https://bernardmarr.com/

Marquette University

Brian D Goodwin, PhD

Medical College of Wisconsin

BD Goodwin, FA Pintar, NA Yoganandan. (2017). Annals Bio. Eng.

BD Goodwin, CR Butson. (2015). J Neuromodulation

There are many paths, but here is mine
• Undergrad: BS Mech. Eng. at MSOE – 2009

• Coding/programming
• Control systems
• Finite element modeling (or FEM; also, FEA)

• Started a Masters in Biomedical Eng. at MU …
• Decided to just do a PhD about 6 months into my Masters

• PhD took 5.5 years
• Specialized in neuroscience and computational science

• Stayed in research to do a postdoctoral fellowship at MCW
• Fellowship was about 2 year (could have been longer)
• Specialized in biomechanics, signal processing, and machine-learning

• Transitioned into industry at IT consulting firm in the “Data & AI” space
• 3 years
• Specialized in cloud solution architecture, machine-learning, and optimization

• Recently accepted an offer from an AI company, Synthetaic
• Using AI to generate synthetic datasets: large datasets that represent and characterize rare events

A few thoughts on mechanical engineering
• (I'm obviously biased, but) I think a BSME sets you up for success
• Examples: the PI's I worked under and the CTO at Synthetaic
• Problems with "condensed concentrations/majors” (in my opinion)

• Biomedical Engineering
• Mechanical Eng.
• Electrical Eng.
• Systems Physiology
• Materials Science & Biocompatilibity

• Data Science
• Computer Science
• Statistics
• Signal processing
• Mathematics and Lin. Alg.
• General Engineering
• Data Engineering

What is potentially ahead for you

• Industry
• Academia
• How do I get the position I want?
• Competence, but many of the competencies needed for a given job

(especially your first one) are learned on the job.
• At the end of the day, stories and relevant/novel contributions will land you

the type of engineering job you want
• Craft your stories accordingly
• Question asking!

Transcranial Magnetic Stimulation and
Magnetism in Medicine

(Nuclear) Magnetic Resonance Imaging
Magnetoencephalography (MEG)

Transcranial Magnetic Stimulation

Idris Z, et al. 2013 (Chapter 2, “Clinical Management and Evolving Novel…”, Lichtor T)

ECS DBS TMS

Modeling Pipeline for Prescriptive Therapy

 40

Figure 6 Fourier Solver Calculation Steps. The numerical process to calculate the time-dependent
electromagnetic solution from a transient magnetic pulse has three steps indicated by the black arrows. In
the case of TMS, the magnetic source is the electric current flowing through the TMS coil. The Fourier
Solver was developed for use in finite element methods (middle black arrow).

0 0.5 ms

0

3

0 20 kHz
0

0.1

0 20 kHz
0

0.1

0 0.5 ms
0

0.5
1

Time

Time

Frequency

Frequency

Monophasic Stimulus
(Magnetic Field)

Stimulus Discrete
Fourier Series

Electromagnetic
Solution Discrete

Fourier Series

Time-dependent
Electromagnetic

Solution

Compute System of equations
at each Fourier Component

Compute the Inverse DFT

Compute the DFT

 117

Figure 35 E-Field Within the Cortex for Three Coil Orientations. (Top left) The location of the data plane
(red) relative to the pial surface is shown with the coordinate frame. E-field magnitude maps are shown at
peak E-field during the stimulus pulse. Conductivity tensors are superimposed over E-field maps within the
data plane. FEM results are shown for three stimulus experiments (biphasic @ 130% RMT). Coil placements
are shown in the left panes with the primary direction of the induced E-field.

10
 m

m

32105178

54
Monophasic (V/m)

Electric Field
Direction

El
ec

tri
c

Fi
el

d

Biphasic (V/m)

174295

-75º

-124º

-18º

Pi
al

 S
ur

fac

e

 111

within Nissl stain layers I and II. From the soma to the tip of the highest dendrite

measures 800 µm.

Axon Tractography Near Cortex

Axon tractography was performed using SCIRun’s (SCI Institute, University of

Utah, Salt Lake City) interface with Tend Fiber (TEEM49), which uses Westin’s linear

tensor-line algorithm (Westin et al., 2002). A point cloud was generated around the

neuron cell bodies to provide seeds for the axon tractography algorithm. Fiber tracts

were generated with the termination criteria that fibers must have minimum length of

20mm and FA must be >0.5. Connections were formed between the cell bodies and fiber

tracts via a custom algorithm in m-script that employs Hermite splines50. This algorithm

ensures that axon trajectories are void of sharp curves (Figure 31). All pyramidal cells in

the population had axons 20 mm in length.

Figure 31 Use of DTI for Anisotropic Conductivity and Neuron Axon Tractography. (Left) Acquired DTI
was applied to the 3D head model for the inclusion of anisotropic conductivity. (Right) Diffusion tensors were
employed for axon tractography to construct descending axons from the pyramidal cell bodies. Four out of
6111 neurons are shown for the purpose of example.

49 http://teem.sourceforge.net/
50 A Hermite spline is a 3D spline generated from Hermite’s polynomials, which requires the
location and spline trajectory (vector) of two points.

Goodwin, Butson. “Subject-Specific Multiscale Modeling...” Neuromodulation (2015).

200 V/m

350 V/m

50 V/m

-180º-135º-90º

E-field and Brain Stimulation

 57

Figure 11 Induced E-field Vectors and E-field Magnitude Contour Map. Induced E-field vectors and
relative E-field magnitude contour lines on a plane 1cm below the plane of the figure-8 TMS coil. Dark red
line indicates 0.9 of the max E-field magnitude.

The measured EMF happened to match the waveform characteristics (Figure 12)

specified by the manufacturer in terms of the rise time, duration, and shape (Jalinous,

1998; Walsh & Pascual-Leone, 2005). Unfortunately, I was able to neither record nor

calculate the actual current through the TMS coil. For this reason, I elected to model the

actual current by normalizing the measured waveforms and scaling them according to

manufacturer specifications to enable prediction of the absolute induced fields. The

shape of the current waveform through the coil was calculated post-hoc by integrating

the EMF record (Figure 12).

50mm

0.1

0.2
0.3

Computational Neuroscience and HPC

Patient-specific Modeling Pipeline Results

Human Subject Comparison

Goodwin, Marquette University (2015)

Biomechanics and Multi-channel HF Signals

Biomechanics and Multi-channel HF Signals

Acoustic
Emissions
from Bone
Fracture
Events

Goodwin, et al. “Acoustic Emission Signatures During Failure of Vertebra and Long Bone.” Annals of Biomedical Engineering, 2017.

Business, Tech, and Science News Text Sources:
The Economist; Wall Street Journal; Science (AAAS); Reuters; BBC

Predictive Analytics

Machine Learning

Internet of Things

Artificial Intelligence

Prescriptive Analytics

Statistical Learning

BigData
Predictive Modeling

Probabilistic ModelingRegression Analysis
Clustering

Unsupervised Learning

Classification
Supervised Learning

Deep Learning
Neural Networks

Bayesian
Frequentist

Map Reduce

What industry thinks about Data Science

Risk Estimation

Business Intelligence

Statistical
Measures

Key Performance
Indicators

Data

Development & Data Analytics
Data Science

Color Key

Data Factory

Data science is perceived as many things…

“Big Data”Statistics Machine-
learning

Business
Intelligence
and Cloud

Intelligence

Dashboards &
Visualizations

Information
Management

Big Data Stores Machine Learning
and Analytics

CortanaEvent Hubs
HDInsight
(Hadoop and
Spark)

Stream
Analytics

Data Intelligence Action

People

Automated
Systems

Apps

Web

Mobile

Bots

Bot
Framework

SQL Data
WarehouseData Catalog

Data Lake
Analytics

Data Factory Machine
LearningData Lake Store Cognitive

Services

Power BI

Data
Sources

Apps

Sensors
and devices

Data

Cloud Solution Architecture

• 1 in 1000 products are defective
• QC performs a defect test that has a 95% accuracy;
• i.e., a 95% true positive rate and 5% false positive rate

• The test never fails to identify a defective product (false
negatives are impossible)

• QC tests a product at random, and the test is positive
(indicating defective product)

What is the probability that the product is actually
defective?

Statistics! Question...

An answer in plain words:
• If 1000 randomly selected billets were tested...

• Then 50 parts will test positive (5% false positive rate)
• But only 1 of them is actually defective.

• Therefore, !
"!
≈ 0.02 or 𝟐%

We are poor intuitive statisticians

D:	positive	defect	test
defect:	part	is	actually	defective

𝑝 defect = 0.001
𝑝 normal = 0.999
𝑝 𝐷|𝑑𝑒𝑓𝑒𝑐𝑡 = 1.00
𝑝 𝐷|𝑛𝑜𝑟𝑚𝑎𝑙 = 0.05

𝑝 𝐷 = 𝑝 𝐷 defect 𝑝 defect + 𝑝 𝐷 ~defect 𝑝 ~defect
𝑝 𝐷 = 1.00 ∗ 0.001 + 0.05 ∗ 0.999 = 0.05095

𝑝 defect|𝐷 =
𝑝 𝐷|defect 𝑝 defect

𝑝 𝐷
=
1.00 ∗ 0.001
0.05095

= 0.0196 ≈ 𝟐%

Answer...
Human intuition is really expensive, yet it’s
error prone in 2 delicate environments:
1) one requiring use of statistics and
2) one where many variables are interacting
with each other.

”But the cleverest of algorithms are no
substitute for human intelligence and
knowledge of the data in the problem.”

- Brieman and Cutler, UC Berkley, inventors of the Random Forest ML algorithm.
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_philosophy.htm

A Caveat...

Data Intelligent Activity

You will need a
computer to do this...

Data Model
Intelligible symbols

(e.g., a number)

Acquisition
Or

“Ingestion”

You will need a
brain to do this...

Information

This stuff is what
drives decisions...

Predictive
Model
S𝑓(𝑥)

Insight or
Statistic

“This... is a Football”

S𝑓 𝑋𝑋 X𝑌

Can be “black box”

Predictors (Inputs) Prediction Model Prediction

At the end of the day: it’s a function

Say you have some system that produces an output
𝑌 = 𝑓 𝑋 + 𝜖

But it’s impossible to know all of the factors (𝑋 features)
that influence 𝑌, let alone the exact function, 𝑓. So, we try
to estimate this:

X𝑌 = S𝑓 𝑋

The system, 𝑓, has predictive power (prediction).
The system, 𝑓, has explanatory power (inference).

Why Estimate 𝑓 ?

A more tangible (supervised learning)
example…

See: https://playground.tensorflow.org/

S𝑓 𝑋𝑋 X𝑌
Predictors (Inputs) Prediction Model Prediction

𝑋 𝑌

https://playground.tensorflow.org/

A more tangible (supervised
learning) example…

Learning or “Training” set

Validation or “Testing” set

See: https://playground.tensorflow.org/

ba

Label: 1 or 0

Activation
function

a1
a2 b1

b2

Neural Network

https://playground.tensorflow.org/

X_1

X_2

Label: 1

Label: 0

Precision: 9 / (9+23) = 28.1%
Recall: 9 / (9+1) = 90%

SVM FALSE TRUE
FALSE 216 1
TRUE 23 9

Actual

Model Performance

Pr
ed

ic
te

d

Machine Learning & Estimating a 𝑓(x)
• Supervised Learning
• Classification problems; e.g., classifying

images, anomaly detection, etc.
• Features have a known class and you want to

predict the class for a new set of features.
• Unsupervised Learning
• Data clustering
• No known labels
• Grouping data points with similarities among

their features.
• Reinforcement Learning
• Neural Network or Deep Learning
• Optimizing the performance of some action
• Common in Robotics

Pillars of Data
Science

Models Compute Data

Published as a conference paper at ICLR 2018

PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras

NVIDIA
{tkarras,taila,slaine,jlehtinen}@nvidia.com

Timo Aila

NVIDIA
Samuli Laine

NVIDIA
Jaakko Lehtinen

NVIDIA and Aalto University

ABSTRACT

We describe a new training methodology for generative adversarial networks. The
key idea is to grow both the generator and discriminator progressively: starting
from a low resolution, we add new layers that model increasingly fine details as
training progresses. This both speeds the training up and greatly stabilizes it, al-
lowing us to produce images of unprecedented quality, e.g., CELEBA images at
10242. We also propose a simple way to increase the variation in generated im-
ages, and achieve a record inception score of 8.80 in unsupervised CIFAR10.
Additionally, we describe several implementation details that are important for
discouraging unhealthy competition between the generator and discriminator. Fi-
nally, we suggest a new metric for evaluating GAN results, both in terms of image
quality and variation. As an additional contribution, we construct a higher-quality
version of the CELEBA dataset.

1 INTRODUCTION

Generative methods that produce novel samples from high-dimensional data distributions, such as
images, are finding widespread use, for example in speech synthesis (van den Oord et al., 2016a),
image-to-image translation (Zhu et al., 2017; Liu et al., 2017; Wang et al., 2017), and image in-
painting (Iizuka et al., 2017). Currently the most prominent approaches are autoregressive models
(van den Oord et al., 2016b;c), variational autoencoders (VAE) (Kingma & Welling, 2014), and gen-
erative adversarial networks (GAN) (Goodfellow et al., 2014). Currently they all have significant
strengths and weaknesses. Autoregressive models – such as PixelCNN – produce sharp images but
are slow to evaluate and do not have a latent representation as they directly model the conditional
distribution over pixels, potentially limiting their applicability. VAEs are easy to train but tend
to produce blurry results due to restrictions in the model, although recent work is improving this
(Kingma et al., 2016). GANs produce sharp images, albeit only in fairly small resolutions and with
somewhat limited variation, and the training continues to be unstable despite recent progress (Sali-
mans et al., 2016; Gulrajani et al., 2017; Berthelot et al., 2017; Kodali et al., 2017). Hybrid methods
combine various strengths of the three, but so far lag behind GANs in image quality (Makhzani &
Frey, 2017; Ulyanov et al., 2017; Dumoulin et al., 2016).

Typically, a GAN consists of two networks: generator and discriminator (aka critic). The generator
produces a sample, e.g., an image, from a latent code, and the distribution of these images should
ideally be indistinguishable from the training distribution. Since it is generally infeasible to engineer
a function that tells whether that is the case, a discriminator network is trained to do the assessment,
and since networks are differentiable, we also get a gradient we can use to steer both networks to
the right direction. Typically, the generator is of main interest – the discriminator is an adaptive loss
function that gets discarded once the generator has been trained.

There are multiple potential problems with this formulation. When we measure the distance between
the training distribution and the generated distribution, the gradients can point to more or less random
directions if the distributions do not have substantial overlap, i.e., are too easy to tell apart (Arjovsky
& Bottou, 2017). Originally, Jensen-Shannon divergence was used as a distance metric (Goodfellow
et al., 2014), and recently that formulation has been improved (Hjelm et al., 2017) and a number of
more stable alternatives have been proposed, including least squares (Mao et al., 2016b), absolute
deviation with margin (Zhao et al., 2017), and Wasserstein distance (Arjovsky et al., 2017; Gulrajani

1

Published as a conference paper at ICLR 2018

Figure 10: Top: Our CELEBA-HQ results. Next five rows: Nearest neighbors found from the train-
ing data, based on feature-space distance. We used activations from five VGG layers, as suggested
by Chen & Koltun (2017). Only the crop highlighted in bottom right image was used for comparison
in order to exclude image background and focus the search on matching facial features.

18

Karras, T. et al., 2017. Progressive Growing of GANs for Improved Quality, Stability, and Variation. In ICLR 2018. pp. 1–26.

Hollon, et al. 2020, Nature.

Improving intra-operative process in
neurosurgery

3 5 4 | N A T U R E | V O L 5 5 0 | 1 9 O C T O B E R 2 0 1 7

ARTICLE
doi:10.1038/nature24270

Mastering the game of Go without
human knowledge
David Silver1*, Julian Schrittwieser1*, Karen Simonyan1*, Ioannis Antonoglou1, Aja Huang1, Arthur Guez1,
Thomas Hubert1, Lucas Baker1, Matthew Lai1, Adrian Bolton1, Yutian Chen1, Timothy Lillicrap1, Fan Hui1, Laurent Sifre1,
George van den Driessche1, Thore Graepel1 & Demis Hassabis1

Much progress towards artificial intelligence has been made using
supervised learning systems that are trained to replicate the decisions
of human experts1–4. However, expert data sets are often expensive,
unreliable or simply unavailable. Even when reliable data sets are
available, they may impose a ceiling on the performance of systems
trained in this manner5. By contrast, reinforcement learning systems
are trained from their own experience, in principle allowing them to
exceed human capabilities, and to operate in domains where human
expertise is lacking. Recently, there has been rapid progress towards this
goal, using deep neural networks trained by reinforcement learning.
These systems have outperformed humans in computer games, such
as Atari6,7 and 3D virtual environments8–10. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go,
widely viewed as a grand challenge for artificial intelligence11—require
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance
in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version12, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a policy network that outputs
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently
refined by policy-gradient reinforcement learning. The value network
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with
a Monte Carlo tree search (MCTS)13–15 to provide a lookahead search,
using the policy network to narrow down the search to high-probability
moves, and using the value network (in conjunction with Monte Carlo
rollouts using a fast rollout policy) to evaluate positions in the tree. A
subsequent version, which we refer to as AlphaGo Lee, used a similar
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and
AlphaGo Lee12 in several important aspects. First and foremost, it is

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it
uses only the black and white stones from the board as input features.
Third, it uses a single neural network, rather than separate policy and
value networks. Finally, it uses a simpler tree search that relies upon
this single neural network to evaluate positions and sample moves,
without performing any Monte Carlo rollouts. To achieve these results,
we introduce a new reinforcement learning algorithm that incorporates
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in
the search algorithm, training procedure and network architecture are
described in Methods.

Reinforcement learning in AlphaGo Zero
Our new method uses a deep neural network fθ with parameters θ.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
a value, (p, v) = fθ(s). The vector of move probabilities p represents the
probability of selecting each move a (including pass), pa = Pr(a| s). The
value v is a scalar evaluation, estimating the probability of the current
player winning from position s. This neural network combines the roles
of both policy network and value network12 into a single architecture.
The neural network consists of many residual blocks4 of convolutional
layers16,17 with batch normalization18 and rectifier nonlinearities19 (see
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s,
an MCTS search is executed, guided by the neural network fθ. The
MCTS search outputs probabilities π of playing each move. These
search probabilities usually select much stronger moves than the raw
move probabilities p of the neural network fθ(s); MCTS may therefore
be viewed as a powerful policy improvement operator20,21. Self-play
with search—using the improved MCTS-based policy to select each
move, then using the game winner z as a sample of the value—may
be viewed as a powerful policy evaluation operator. The main idea of
our reinforcement learning algorithm is to use these search operators

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

1DeepMind, 5 New Street Square, London EC4A 3TW, UK.
*These authors contributed equally to this work.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Silver, D. et al., 2017. Mastering the game of Go without human knowledge. Nature, 550, p.354.

ARTICLERESEARCH

3 5 8 | N A T U R E | V O L 5 5 0 | 1 9 O C T O B E R 2 0 1 7

Fig. 2); ultimately AlphaGo Zero preferred new joseki variants that
were previously unknown (Fig. 5b and Extended Data Fig. 3). Figure 5c
shows several fast self-play games played at different stages of train-
ing (see Supplementary Information). Tournament length games
played at regular intervals throughout training are shown in Extended
Data Fig. 4 and in the Supplementary Information. AlphaGo Zero
rapidly progressed from entirely random moves towards a sophisti-
cated understanding of Go concepts, including fuseki (opening), tesuji
(tactics), life-and-death, ko (repeated board situations), yose
(endgame), capturing races, sente (initiative), shape, influence and
territory, all discovered from first principles. Surprisingly, shicho
(‘ladder’ capture sequences that may span the whole board)—one of
the first elements of Go knowledge learned by humans—were only
understood by AlphaGo Zero much later in training.

Final performance of AlphaGo Zero
We subsequently applied our reinforcement learning pipeline to a
second instance of AlphaGo Zero using a larger neural network and
over a longer duration. Training again started from completely random
behaviour and continued for approximately 40 days.

Over the course of training, 29 million games of self-play were gener-
ated. Parameters were updated from 3.1 million mini-batches of 2,048
positions each. The neural network contained 40 residual blocks. The
learning curve is shown in Fig. 6a. Games played at regular intervals
throughout training are shown in Extended Data Fig. 5 and in the
Supplementary Information.

We evaluated the fully trained AlphaGo Zero using an internal
tournament against AlphaGo Fan, AlphaGo Lee and several previous
Go programs. We also played games against the strongest existing
program, AlphaGo Master—a program based on the algorithm and
architecture presented in this paper but using human data and fea-
tures (see Methods)—which defeated the strongest human professional
players 60–0 in online games in January 201734. In our evaluation, all
programs were allowed 5 s of thinking time per move; AlphaGo Zero
and AlphaGo Master each played on a single machine with 4 TPUs;
AlphaGo Fan and AlphaGo Lee were distributed over 176 GPUs and
48 TPUs, respectively. We also included a player based solely on the raw
neural network of AlphaGo Zero; this player simply selected the move
with maximum probability.

Figure 6b shows the performance of each program on an Elo scale.
The raw neural network, without using any lookahead, achieved an Elo
rating of 3,055. AlphaGo Zero achieved a rating of 5,185, compared

to 4,858 for AlphaGo Master, 3,739 for AlphaGo Lee and 3,144 for
AlphaGo Fan.

Finally, we evaluated AlphaGo Zero head to head against AlphaGo
Master in a 100-game match with 2-h time controls. AlphaGo Zero
won by 89 games to 11 (see Extended Data Fig. 6 and Supplementary
Information).

Conclusion
Our results comprehensively demonstrate that a pure reinforcement
learning approach is fully feasible, even in the most challenging of
domains: it is possible to train to superhuman level, without human
examples or guidance, given no knowledge of the domain beyond basic
rules. Furthermore, a pure reinforcement learning approach requires
just a few more hours to train, and achieves much better asymptotic
performance, compared to training on human expert data. Using this
approach, AlphaGo Zero defeated the strongest previous versions of
AlphaGo, which were trained from human data using handcrafted fea-
tures, by a large margin.

Humankind has accumulated Go knowledge from millions of games
played over thousands of years, collectively distilled into patterns, prov-
erbs and books. In the space of a few days, starting tabula rasa, AlphaGo
Zero was able to rediscover much of this Go knowledge, as well as novel
strategies that provide new insights into the oldest of games.
Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.

Received 7 April; accepted 13 September 2017.

1. Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Springer, 2009).

2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
3. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classi!cation with deep

convolutional neural networks. In Adv. Neural Inf. Process. Syst. Vol. 25
(eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 1097–1105
(2012).

4. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition.
In Proc. 29th IEEE Conf. Comput. Vis. Pattern Recognit. 770–778 (2016).

5. Hayes-Roth, F., Waterman, D. & Lenat, D. Building Expert Systems (Addison-
Wesley, 1984).

6. Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015).

7. Guo, X., Singh, S. P., Lee, H., Lewis, R. L. & Wang, X. Deep learning for real-time
Atari game play using o"ine Monte-Carlo tree search planning. In Adv. Neural
Inf. Process. Syst. Vol. 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D. & Weinberger, K. Q.) 3338–3346 (2014).

Gnu
Go

Pac
hi

Cra
zy

 S
to

ne

Alpha
Go F

an

Raw
 ne

tw
or

k

Alpha
Go L

ee

Alpha
Go Z

ero

Alpha
Go M

as
ter0 5 10 15 20 25 30 35 40

–2,000

–1,000

0

1,000

2,000

3,000

4,000

5,000

AlphaGo Master
AlphaGo Lee

0

1,000

2,000

3,000

4,000

5,000

AlphaGo Zero 40 blocks

El
o

ra
tin

g

El
o

ra
tin

g

Days

a b

Figure 6 | Performance of AlphaGo Zero. a, Learning curve for AlphaGo
Zero using a larger 40-block residual network over 40 days. The plot shows
the performance of each player αθi from each iteration i of our
reinforcement learning algorithm. Elo ratings were computed from
evaluation games between different players, using 0.4 s per search (see
Methods). b, Final performance of AlphaGo Zero. AlphaGo Zero was
trained for 40 days using a 40-block residual neural network. The plot
shows the results of a tournament between: AlphaGo Zero, AlphaGo
Master (defeated top human professionals 60–0 in online games), AlphaGo

Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as well as
previous Go programs Crazy Stone, Pachi and GnuGo. Each program was
given 5 s of thinking time per move. AlphaGo Zero and AlphaGo Master
played on a single machine on the Google Cloud; AlphaGo Fan and
AlphaGo Lee were distributed over many machines. The raw neural
network from AlphaGo Zero is also included, which directly selects the
move a with maximum probability pa, without using MCTS. Programs
were evaluated on an Elo scale25: a 200-point gap corresponds to a 75%
probability of winning.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Design Optimization

• Constrained optimization
• Design constraints
• Optimizing for specific

circumstance (e.g., lap
speed on a specific course)

• Structural engineering and
optimization

• Reinforcement learning
• Massive parameter space
• Simulation environment for

quantifying outcomes

https://www.fastcompany.com/3054028/inside-the-hack-rod-the-worlds-first-ai-designed-car

