1. (1 point) Let \(x_1(n) = 0.5 \cos((\pi/2) n) + \cos(\pi n) \). Calculate \(X_1(e^{j\omega}) \). Recall that the DTFT of \(\cos(\omega_0 n) \) is \(\pi(\delta(\omega - \omega_0) + \delta(\omega + \omega_0)) \).

 Applying linearity:
 \[
 X_1(e^{j\omega}) = \pi \left(0.5 (\delta(\omega - \frac{\pi}{2}) + \delta(\omega + \frac{\pi}{2})) + (\delta(\omega - \pi) + \delta(\omega + \pi)) \right)
 \]

2. (1 point) Let \(x_3(n) = x_1(n) (u(n+2) - u(n-2)) \). Calculate the samples of \(x_3(n) \).

 \[
 \begin{array}{cccccccccc}
 n & \cdots & -3 & -2 & -1 & 0 & 1 & 2 & \cdots \\
 u(n+2) & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
 u(n-2) & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 \end{array}
 \]

 Effectively, \(n = -2:1 \):

 \[
 \begin{array}{cccccccccc}
 n & \cdots & -2 & -1 & 0 & 1 & 2 & \cdots \\
 \cos(\omega) & 0 & 0 & 0 & 0 & 0.5 & 0 & 0 & 0 \\
 \end{array}
 \]

3. (1 point) Calculate \(X_2(e^{j\omega}) \) based on your answer to the previous question. Recall that \(X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n} \). Note: your answer will look a lot different than your answer to the first question since the sin waves are truncated in time.

 \[
 X(e^{j\omega}) = 0.5 e^{j\omega^2} - e^{j\omega} + 1.5 - e^{-j\omega}
 \]
Given the difference equation \(y(n) = 0.8 y(n-1) - 0.6 x(n) \)

4. (2 points) Take the DTFT of both sides of the equation. Recall that the DTFT of a delayed signal, \(y(n-k) \), is \(e^{-j\omega k} Y(e^{j\omega}) \).

 \[
 Y(e^{j\omega}) = 0.8 e^{-j\omega} Y(e^{j\omega}) - 0.6 X(e^{j\omega})
 \]

5. (2 points) Solve the above equation for transfer function \(H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} \)

 \[
 Y(e^{j\omega})(1 - 0.8 e^{-j\omega}) = -0.6 X(e^{j\omega})

 H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{-0.6}{1 - 0.8 e^{-j\omega}}
 \]

6. (1 point) Let \(f_1 = 1200 \text{ Hz}, f_1 = 300 \text{ Hz}, \) and \(f_2 = 600 \text{ Hz}. \) Calculate the digital frequencies, \(\omega_n \), for each frequency, \(\omega_n \), for \(f_1 \) through \(f_2 \). Recall that the digital frequency is how many radians a sinusoid moves through between samples. For example, if a signal is sampled 10 times per period, its digital frequency is \(2\pi/10 \).

 \[
 \omega_1 = \frac{f_1}{f_s} \cdot 2\pi = \frac{1200}{1500} \cdot 2\pi = \frac{24\pi}{5} \]

 \[
 \omega_2 = \frac{f_2}{f_s} \cdot 2\pi = \frac{600}{1500} \cdot 2\pi = \frac{2\pi}{5}
 \]

7. (2 points) Evaluate \(H \) at the digital frequencies calculated above.

 \[
 H(e^{j\omega}) = \frac{-0.6}{1 - 0.8 e^{-j\omega}} = \frac{-0.6}{1 - 0.8e^{-j\omega}}

 = \frac{0.48 - 0.6}{1.64} = -0.365 + j0.292

 = 0.468 \angle 24.66^\circ \text{ or useful form}

 = 0.468 \angle 0.785 \pi \text{ for angle}

 = 0.468 \angle 141.3^\circ
 \]

8. (1 point) What do these values of \(H \) tell you about the steady state response to sinusoids?

 The magnitude and angle of \(H \) are the gain and phase shift of a sinusoid at that frequency.