Given the difference equation \(y(n) = 0.5 \, y(n-1) + 5 \, x(n) - 2 \, x(n-1) \)

1. (2 points) Take the z-transform of both sides of the equation. Remember, \(z^{-1} \) represents a sample delay.
 \[
 Y(z) = \frac{1}{2} \, z^{-1} \, Y(z) + 5 \, X(z) - 2 \, z^{-1} \, X(z)
 \]

2. (2 points) Solve the above equation for the transfer function \(H(z) \).
 \[
 Y(z) \left(1 - \frac{1}{2} \, z^{-1} \right) = X(z) \left(5 - 2 \, z^{-1} \right)
 \]
 \[
 H(z) = \frac{Y(z)}{X(z)} = \frac{5 - 2 \, z^{-1}}{1 - \frac{1}{2} \, z^{-1}} = \frac{10 \, z^{-2}}{2 - z^{-1}}
 \]
 Preferred form

3. (2 points) Let the input \(x(n) \) be the causal sequence \([1 \, 1/8 \, 1/16 \, ...]\). Note that this is a geometric series with ratio \(+1/2 \). Calculate \(X(z) \).
 \[
 X(z) = \frac{z}{z - 1/2} = \frac{1 - \frac{1}{2} \, z^{-1}}{z^{-1}} \quad \text{Preferred form}
 \]

4. (1 point) Calculate \(Y(z) \) based on \(H(z) \) and \(X(z) \) above. You DO NOT need to simplify it using partial fractions.
 \[
 Y(z) = H(z) \, X(z) = \frac{5 \, z - 2}{z - \frac{1}{2}} \cdot \frac{z}{z - \frac{1}{2}} = \frac{5z^2 - 2z}{(z - \frac{1}{2})^2}
 \]

5. (1 point) Calculate the z-transform of \(x = [6 \, -5 \, 2] \), which starts at \(n=-2 \).
 \[
 X(z) = 6z^2 - 5z + 2
 \]

6. (2 points) Calculate the inverse z-transform of \(X(z) = \frac{z^2 - 3z}{z - 1} - \frac{z - 2}{z - 0.1} \).
 \[
 x(n) = u(n) - 0.1^{n-2} \, u(n-2)
 \]