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Problems for Op 2012 
By Darrin Rothe, PhD, P.E. <rothede@msoe.edu> 

Friday 16 November 2012 
Copyright © 2012 MSOE 

1 Middle of the Word (10 Points) 
Write a program that will prompt the user to enter a word, and then respond by printing the middle character 

back to the user.  If the word has an even number of letters, the program should print the two middle letters. 

Sample session (program generated output is bold, user entered is gray): 

  

 
 

 

2 Eggy-Peggy Decoder (10 Points) 
Eggy-Peggy is a secret language where the first vowel in normal English words is preceded by the string ‘egg.’  

Thus the phrase “Mary had a little lamb” becomes “Meggary heggad egga leggittle leggamb.”  Write a program 

that will prompt the user to enter a single Eggy-Peggy word and subsequently provide the decoded word.  Your 

program should not be case-sensitive, so inputs eggapple, Eggapple and eGgapple would all produce the output: 

apple.  Also, case does not need to be preserved, so an input of Meggary could produce mary as output. 

Sample session (program generated output is bold, user entered is gray): 

  

  

Enter word:  hello 
Middle: l 

Enter word:  Meggary 
Decoded word: mary 
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3 Zeller’s Congruence (10 Points) 
Zeller’s congruence is an algorithm to determine the day of week for any given date.  For the modern 

(Gregorian) calendar, the congruence is: 

 

where 

 h is the day of week (0=Saturday, 1=Sunday, …) 

 q is the day of the month (1 - 31) 

 m is the month (3=March, 4=April, …, 12=December, 13=January, 14=February) (see note below) 

 K is the year of the century (year mod 100, for this year K = 12 with possible exception, see below) 

 J is the century (year/100,  for this year J=20) 

 The operation ⌊ ⌋ is the floor function, that is, the argument is rounded down to nearest integer value 

NOTE: For this algorithm, January and February are months 13 and 14 of the year before.  Therefore, if you are 

evaluating January 15, 2012, m = 13, K = 11, J = 20. 

Write a program that will prompt the user for a date in traditional all-numeric form of m/d/yyyy.  Respond to 

the user with the calculated day of week for that date.  You can assume a valid date was entered. 

Sample session (program generated output is bold, user entered is gray): 

  

 

4 Balls in a Pyramid (20 points) 
Consider a pyramid with a triangular base (tetrahedron) formed by 

stacking tennis balls.  Write a program that will prompt the user to enter 

the number of layers of the pyramid, and will calculate and then display 

how many balls would be contained in the entire pyramid.  You may 

assume a positive number is entered. 

Sample session (program generated output is bold, user entered is gray): 

  

Enter date (m/d/yyyy):  11/16/2012 
Day of Week: Friday 

Enter layers:  4 
Balls: 20 

Figure 1.  A triangular ball pyramid 
with four layers. 
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5 Sieve of Eratosthenes (20 Points) 
The Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.  It does this 

in a brute-force fashion by starting with a list or array of all numbers up to the given limit, then, starting with 2 

as the first prime number, “crosses out” all multiples of 2 since they cannot be prime numbers.  It then proceeds 

to the next number not crossed out, 3 in this case, and crosses out all multiples of it.  This continues until all 

numbers up to the given limit have been considered.  All numbers in the list not crossed out are prime numbers. 

Implement a prime number generator that implements the sieve of Eratosthenes.  Your program should prompt 

the user to provide the upper limit of consideration, and subsequently, list all prime numbers between 0 and 

that upper limit.  0 and 1 are not considered prime numbers by definition.  You must implement a version of this 

algorithm. 

Sample session (program generated output is bold, user entered is gray): 

  

6 Craps Simulator (20 Points) 
Craps is a common dice game with relatively simple rules.  A round of craps is played with two six-sided dice. If 

the total for the first roll is 7 or 11 (a "natural"), the player wins immediately. If the total for the first roll is 2, 3, 

or 12 ("craps") the player loses immediately. If the total for the first roll is any other number (called the player's 

"point"), the player must continue rolling the dice.  On each of these subsequent rolls, if the player rolls his point 

value again, he wins.  However, if a 7 is rolled, the player loses.  Consider these example rounds: 

Round 1: Roll: 7 – win 

Round 2: Roll: 12 – lose 

Round 3: Roll: 8 (8 is now the “point”) 

  Roll: 6 

  Roll: 4 

  Roll: 8 – win 

Round 4: Roll: 10 (10 is now the “point”) 

  Roll: 5 

  Roll: 7 – lose 

 

Write a program that will simulate a player playing a user-specified number of rounds of craps.  Specifically, the 

program should prompt the user to enter the number of rounds to play.  The program will then simulate that 

number of rounds, collecting win and loss information.  Upon completion, the program will report the number 

of wins, number of losses, and the percentage of wins. 

Sample session (program generated output is bold, user entered is gray): 

  

Enter upper limit:  20 
Primes: 2 3 5 7 11 13 17 19  

Enter number of rounds to simulate:  200 
Wins: 97 
Losses: 103 
Win percentage: 48.5%   
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7 Binary Addition (40 Points) 
A binary number represents a numerical value with a positional base-2 notation.  Thus, only the numerals 0 and 

1 are used.  As a positional system, there will be the “one’s” position, the “two’s” position, the “four’s” position 

and so on (similar to decimal’s one’s, ten’s, hundred’s,…).  If counting from 0 to 5, the binary equivalents would 

be 0, 1, 10, 11, 100, and 101. 

Create a program that will perform addition on two binary numbers entered by the user.  You may prompt for 

each addend separately or have the user enter an expression (i.e. 1011 + 1100).  Be sure the format is clear to 

the user.  Your program will respond with the result in binary.  You should reject any entry that is not binary and 

either re-prompt the user or quit with an error message. 

This problem can be accomplished with a number of different approaches, including converting the numbers 

from and to binary as well as performing the addition bit-by-bit.  You are free to use any approach you choose; 

however, you may not use any library (Java API, C standard library, etc.) functions to perform number base 

conversions.  Your program should support binary numbers up to 20 bits wide and should not assume that both 

addends are the same length. 

Sample session (program generated output is bold, user entered is gray): 

  

8 Stock Analyzer (40 Points) 
In order to spot trends in stock prices, various techniques are used.  One common indicator is the moving 

average.  The moving average is a lagging indicator that averages together the last X closing prices where X is 

commonly 21, 50, or 200 days.  If the latest closing price crosses above the moving average, the stock may be 

considered “bullish” and that it is likely to rise higher more quickly.  If the latest closing price moves below the 

moving average, the stock may be considered “bearish” and may indicate future losses. 

The moving average is calculated as one might expect.  For example, the 5-day moving average calculated on 

day 5 would be the arithmetic mean of the closing prices on days 1 ,2 ,3 , 4 and 5.  On day 6, the closing price for 

day 6 would take the place of day 1 in the calculation.  In this example, moving averages calculated on days 1 

through 4 would be incomplete and unreliable. 

Create a stock analyzer program that will prompt the user for a stock’s ticker symbol, open that symbol’s data 

file (ticker_symbol.csv) which will contain historical data for that stock, read in the data, calculate the 21-day 

moving average, and report to the user all instances of the stock becoming bullish or bearish.  Upon each 

report, that date and that date’s closing pricing should also be included.  For purposes of this program, a 21-day 

moving average uses the last 21 days that had prices inclusive (that is, the closing price on the day of interest 

along with the previous 20 days), and does not include days the market was closed.  No trends should be 

reported when there are not 21 days of data available.  Also, only the days that the stock becomes bullish or 

Enter first operand:  1011 
Enter second operand:  11011 
Result: 100110  
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bearish should be reported.  As long as the closing price stays above the moving average or below the moving 

average, no further reports should be made. 

The format of the data files will be as provided by the Yahoo Finance iChart service.  Historical stock data can be 

retrieved with the following URL:  http://ichart.finance.yahoo.com/table.csv?s=[ticker_symbol] where 

ticker_symbol is the ticker symbol of the company of interest.  Some ticker symbols for companies you may be 

familiar with are:  aapl (Apple), goog (Google), msft (Microsoft), and intc (Intel).  Once the file is loaded into the 

browser, it should be saved in a location that can be found by your program, and with .csv as the file extension.  

Sample files are also provided on the contest web page and will be used by the judges to evaluate your program. 

Note the format of the file.  Here is a sample: 

 

The file has column labels on the first line followed by the historical data.  You are interested only in the first 

column, the date; and last column, the adjusted closing price.  Also note the files are in reverse chronological 

order.  The dates are only needed for output and the actual dates are not to be used to determine the days in 

the moving average calculation.  Rather, assume each line in the file represents one consecutive day of trading.  

Sample session (program generated output is bold, user entered is gray): 

  

  

      Date,    Open,    High,     Low,   Close,     Volume,  Adj Close 
2012-10-31,  594.88,  601.96,  587.70,  595.32,   18201300,     595.32 
2012-10-26,  609.43,  614.00,  591.00,  604.00,   36372600,     604.00 
2012-10-25,  620.00,  622.00,  605.55,  609.54,   23440200,     609.54 
2012-10-24,  621.44,  626.55,  610.64,  616.83,   19947400,     616.83 
2012-10-23,  631.00,  633.90,  611.70,  613.36,   25255200,     613.36 
2012-10-22,  612.42,  635.38,  610.76,  634.03,   19526100,     634.03 
2012-10-19,  631.05,  631.77,  609.62,  609.84,   26574500,     609.84 
2012-10-18,  639.59,  642.06,  630.00,  632.64,   17022300,     632.64 
2012-10-17,  648.87,  652.79,  644.00,  644.61,   13894200,     644.61 
… 

Enter ticker:  goog 
Loading goog.csv 
goog was bullish on 2004-09-17 with a closing price of: 117.49 
goog was bearish on 2004-11-10 with a closing price of: 167.86 
goog was bullish on 2004-11-11 with a closing price of: 183.02 
goog was bearish on 2004-11-16 with a closing price of: 172.54 
goog was bullish on 2004-11-26 with a closing price of: 179.39 
goog was bearish on 2004-12-07 with a closing price of: 171.43 
… 
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9 Roman Numeral to Arabic (decimal) Converter (40 points) 
Create a program that will convert a Roman numeral entered by the user to the corresponding Arabic (decimal) 

number.  The converter must support the input Roman numerals representing values from 1 to 3999 which can 

be represented with combinations of I, V, X, L, C, D, and M. 

The value for each numeral is: 

     I = 1    (one) 

     V = 5    (five) 

     X = 10   (ten) 

     L = 50   (fifty) 

     C = 100  (one hundred) 

     D = 500  (five hundred) 

     M = 1000 (one thousand) 

 

Roman numerals are written left to right in descending value and the total value is summed.  Powers of ten (I, X, 

C, M) can be repeated. 

 I = 1 

 CXI = 110 

 MCCLXXIII = 1273 

 

No letter will be repeated more than three times in a row.  Therefore, some values are reached by subtraction.  

Subtraction is indicated when a smaller numeral is in front of a bigger numeral.  The smaller number would only 

be 1/5th or 1/10th the larger one, and only powers of ten (I, X, C) can be subtracted.  There will never be more 

than one smaller number in front of a larger number. 

 IX = 9 

 IIX = not valid, 8 would be written VIII 

 VC = not valid, V is not a power of ten, 95 would be written XCV 

 XC = 90 

 IC = not valid, 99 would be written XCIX 

 

You can assume the entered numeral is of correct format following the rules stated above. 

Sample session (program generated output is bold, user entered is gray): 

  

numeral:  XLVII 
Decimal Value: 47  


