
Problems for OpComp 2023
By Dr. Robert W. Hasker

Friday 17 November 2023
Copyright © 2023

Notes: Unless a problem specifies otherwise, you may assume that all user inputs are valid. The precise
wording of your output is not criLcal as long as it is completely clear. There is generally no Lme limit on
soluLons, but if a soluLon runs far longer than deemed reasonable it will be terminated and marked as
incorrect.

1. Racing ASCII (10 points)

Two ASCII vehicles are racing each other, and your job is to see which wins. A bus and car are
racing, dropping li=le pebbles behind. The race is to determine who travels the furthest in 1
millisecond. For example, the bus wins the following race:

...................bus

...............car

In this race, the two De:

.....................................car

.....................................bus

If a vehicle crashes, it spills pebbles in front of it, and then that vehicle is disqualified and the
other wins automaDcally. If they both crash, the result is a scratch.

Read the two lines from the console. You can assume the lines are all text with no spaces. One
line contains “car”, the other “bus” (in either order), and the rest of each line is periods. No
vehicle can drop more than a thousand pebbles in a millisecond. The output is “car wins”, “bus
wins”, “De”, or “scratch”.

2. A6rac8ve Allitera8on (10 points)

You heard on TikTok that due to the structure of English, it is impossible to have more than 4
words in a row that start with the same le=er. You are curious, so you decide to write a program
that finds and prints the longest alliteraDon in a book. For this problem, alliteraDon is defined as
just the same le=er on successive words rather than the more expansive version that allows
some words. For example,

 MulDple Marvins in Indonesia say Sibyl sells sea shells by the sea shore. $$

Would result in prinDng

 say Sibyl sells sea shells

Note that matching is case-insensiDve. The end of the input is marked by $$, and the input may
be on mulDple lines. There is at least one word in the input (other than $$), all words are
separated by one or more spaces or lines, the character of each word is a le=er, $$ appears only
at the end of the input, and there is always at least a space before the $$ (or it is on its own
line). The output words are separated by a single space. If there are two sequences that are the
same length, print the first.

3. Tubular (10 points)

Your friend sells posters in cardboard tubes and has asked you to build a machine that wraps
the tubes (with posters in them) in paper for shipping as giVs. The machine selects a tube and
cuts it to the proper length, then it wraps the tube in giV wrap. Tubes come in three diameters:
5 cm, 8 cm, and 12 cm. The 5 cm diameter works for posters up to 1 meter in the longest side, 8
cm for posters up to 2 meters, and 12 cm for all other posters. Posters sizes are specified in
cenDmeters, and the machine rotates the poster so the tube covers the shortest side. The
machine then cuts each tube to that length, adding an addiDonal two cm (1 cm at each end) to
allow for endcaps. The giV wrap is cut so it overlaps the tube by 10% around the circumference
and leaves an extra secDon of wrapping paper at each end. That extra secDon is always the
diameter of the tube being wrapped, so a 5 cm tube would require an extra 10 cm of wrapping
paper.

Write a program that reads a list of paper sizes in the form

NxM

where N and M are both cenDmeters. The program is to write the minimum amount of
wrapping paper needed in square meters. Note the actual amount of wrapping paper will likely
be larger because papers come in preset widths, but that adjustment will be done by your
supplier.

The first input is the number of posters, and the remaining input is a list of sizes, one for each
poster, each on its own line. Note the x between the two numbers; there are no spaces in the
line. For example, an input might be

5
23x41
80x12
240x100
10x10
900x650

You can assume the input is forma=ed properly (it is generated by another program) and that
each order will have at least one poster. Print the result with at least 2 digits aVer the decimal.
The above order would require 3.47 square meters of paper.

4. Digging for Lost Treasure (20 points)

A suspected pirate reDred in northern Wisconsin in the town of PeshDgo. You have done careful
research and found several hand-wri=en maps giving possible locaDons of a small chest of
Liberty gold coins buried deep in a field or under the house. Each map has a series of steps in
eight different compass direcDons: N, NE, E, SE, S, SW, W, and NW. The direcDons assume you
start at the front door; fortunately there are enough pictures and survey maps to determine
that locaDon. Where to dig is marked by an X at the end of the list. For example,
 10N, 5E, 2Sw, 3e, X
These direcDons indicate a distance to walk from the pirate’s front door; you determine the
locaDon of the door based on old pictures of the site and house and a town survey. These
direcDons are as forma=ed above:

• All direcDons are on a single line, separated by commas.
• The last direcDon is X because it marks the spot.
• Each item in the list (other than the last) is a posiDve integer followed by a direcDon.
• DirecDons and the X can be upper or lower case.

A challenge is that while the pirate’s height is documented in arrest records, they are
inconsistent and so the stride length must be esDmated. Given the range, we know each step is
between 62 and 68 cenDmeters. Because the pirate is a pracDced navigator with a good
compass, you can trust that he is precise about what direcDon he is facing when stepping, and
you can assume he steps the same distance on each pace. However, your dig point must
account for the unknown step distance by compuDng a bounding box around it.

Using the list of direcDons, compute the distance and direcDon to the digging locaDon relaDve
to the locaDon of the front door. Express the distance as a number of meters north (with
negaDve meaning move south instead) and a number of meters east (with negaDve meaning
move west instead). For each supplied map, report the area to be dug. One corner will be
determined by using the minimum stride distance, the other using the maximum stride
distance. For example, the report for the above example would be
 Dig in the area from (5.32 N, 4.08 E) to (5.84 N, 4.48 E)
The first point in this report assumes the shortest stride length, the second the longest stride
length.

5. 1337-plate (20 points)

A state has a requirement that license plates consist of 3 le=ers followed by 3 digits. You decide
to build a website to appeal to the tech crowd by idenDfying words that can be wri=en using the
Leet alphabet in which le=ers are replaced by digits. For example, 1337 spells “leet” using this

https://simple.wikipedia.org/wiki/Leet

alphabet. Write a program which takes a list of words, idenDfy which have three-character Leet
endings, and print that list (with the Leet replacements for the last three le=ers) using upper
case le=ers and in alphabeDcal order. Use the following table for subsDtuDons:

• 0 = O
• 1 = I or L
• 2 = Z
• 3 = E, M, or W
• 4 = A
• 5 = S
• 6 = G
• 7 = T
• 8 = B or X
• 9 = J or P

There are additional substitutions in Leet, but those substitutions often change the word size.
For this problem, the output word size is always the same as the input word size, so words that
are not 6 letters in length are ignored.

As an example, if the input is

dazzle
cinemas
circle
days
impose
cipher
cinema

then the output would be

CIN334
DAZ213
IMP053

6. Rule 184 (20 points)

Rule 184 is a cellular automaton rule oVen applied to one-dimensional models. For this
problem, we will be modelling traffic flow, and for purposes of this explanaDon, we will assume
traffic flows from leV to right. The “road” is simply an array, with each element holding a ‘c’ if it
is occupied by a car and a ‘.’ if it is empty. The cars will move to the right if there is an empty
spot but stay in place if there is already a car at that place. A car at the end of the road (the
rightmost posiDon) is always carried away, possibly to that great parking lot in the sky.

Implement this Rule 184 model of traffic flow. Your program should prompt the user for how
long the road is (total number of cells) and a string of ‘.’s and ‘c’s represenDng the iniDal
condiDon of the road. Run the model unDl all cars have leV the road, counDng each step as a
single Dck. Report the number of Dcks required to clear the road. You must support a road with
at least 1000 cells, and a string of iniDal condiDons at least 50 characters long. If the user enters
a string that contains any character but ‘.’ or ‘c’, indicate the error to the user and exit.

For example, if the input is
 8
 c.cc..c
then it takes 9 Dcks to clear the traffic.

7. Stuffing Recipes (40 points)

You have a friend who is cooking for a large number of people, and they need your help
planning a filling meal. Your program reads a list of recipes and items in the pantry and prints a
list of dishes to make. A sample recipe is

omelet:
 3 count egg
 0.03 l butter
 40 g cheese
 5 g salt
 435 calories

The first line is a name (as a single word) followed by a colon. The next several lines are
ingredients, each with a quanDty, a unit of measurement (counts, liters, or grams), and a name.
For example, this recipe needs 3 eggs, 0.03 liters of bu=er, 40 grams of cheese, and 5 grams of
salt. The last line is always a number of calories. You can assume the recipe is always in this
format; there is always a name, the items are indented, and the end of the recipe is a number of
calories. The list of recipes is terminated by the word “END”, alone on a line. This is followed by
a list of pantry items; for example:

bread_slice 30 count
salt 500 g
butter 1 l
cheese 500 g
egg 11 count
sugar 1000 g
corn 2000 g

A file containing this recipe, one other, and this list of pantry items is available as
breakfast.txt.

The program is to find all recipes that can be cooked with the products available in the pantry
(which includes some items that would be in a fridge – we are treaDng it all as the pantry for the
purposes of this program) and pick the one that generates the most total calories. For example,
the above pantry can support 3 omelets. Then remove the ingredients used for that recipe,

remembering to factor in the quanDty. For example, cooking three omelets removes 9 eggs
from the pantry. Then find the next recipe that delivers the largest total calories, and remove its
items. Repeat this unDl there are no recipes that can be cooked. When you are done, print the
recipe names, the quanDDes, and the total calories for each recipe:

omelet: 3 servings for 1305 calories
If you add the line
 syrup 0.2 l
to the pantry in breakfast.txt, your program should print

omelet: 3 servings for 1305 calories
french_toast: 2 servings for 1100 calories

Some details:
• All recipe names and ingredients are in lower case.
• You can assume well-formed input; recipes and pantry items follow the specified format.
• Print the items in order by total calories.

This way of solving the problem does not always maximize the total calories in the meal, but it
will generally do well. The basic strategy is to find the recipe that, when made at the maximum
quanDty possible, generates the greatest total number of calories. The ingredients are removed
from the pantry, and the process is repeated. It will be a filling meal!

8. Blocked Out (40 points)

A challenge to theater goers is that travel companies will purchase large blocks of Dckets close
to the stage so they can bundle them with hotel rooms and air fares for people who are
interested in travelling to an event. Your city has passed ordinances against this, so a theater has
employed you to idenDfy possible offenders.

The input to your program is a chart showing seats. Each seat is a le=er followed by a number,
where the le=er indicates the row (starDng from closest to the stage, the bo=om) and the
number represents the column (starDng from the leVmost seat in the row; the posiDon of the
leVmost seat varies by row). Seats that are open are marked with a dot (‘.’), and seats that
don’t exist are marked with a dash (‘-’). Seats might not exist because of columns, walls, or
other equipment. Any other (printable) character indicates who purchased the seat. Different
purchasers have different idenDfying characters; this allows the theater to anonymize the
purchasers so who is purchasing does not influence the algorithm.

The ordinance idenDfies a block purchaser as the same purchaser buying seats in an area with 8
or more adjacent seats, where a two seats are adjacent if they are purchased by the same
person and next to each other in either the same row or column. Note this says nothing about
purchasing mulDple Dckets at non-adjacent locaDons. Your program is to idenDfy all potenDal
blocks and list them in order by the number of seats in each block. If two blocks are the same
size, it does not ma=er which is listed first. For each offender, write the message
 Purchaser x bought y seats starting at uv

where x is the idenDfier for the purchaser, y is a count, u is the row closest to the stage, and v is
the seat number (counDng from 1) in row v that is furthest leV. For example, if the input is

. 1 1 - . . a a
O 1 1 1 1 c a a
1 1 1 - . 2 b b
- b b b b b b -
c c c c c c c -
2 3 a a b a b c

Then the program would print

Purchaser 1 bought 9 seats starting at D1
Purchaser b bought 8 seats starting at C2

You can assume that each row is forma=ed as shown here: seats are separated by a single space
and each row has the same number of characters. If someone purchases mulDple, separate
blocks, each of which is 8 or more seats, then there will be mulDple reports for that person.

9. Scrabble Scramble (40 points)

Scrabble is a game in which players place words horizontally and verDcally on a board so that
each new word shares at least one le=er with any exisDng words. You are being given a target
word and a board and are to idenDfy all places the word can be placed on the board. The
placement must be legal: it must cross at least one other word, any Dme it crosses a word the
le=ers must match, and there cannot be any le=ers before, aVer, or beside the new word. (This
is a simplificaDon of the real rules: new le=ers can be placed next to exisDng le=ers in the game
as long as the new le=ers always create valid words. We are ignoring such excepDons.)

The board is given as N by M grid with ‘.’ used to indicate an empty square and a lower case
le=er for a square that is filled. The target word is all lower case. For each posiDon found,
indicate the starDng point; the posiDon of the first character (where the upper leV corner is (1,
1)) and whether the word would be placed horizontally or verDcally at that point. You can list
the possible places in any order. For example, given the input

cape
........
........
...a....
...p....
...p....
..blame.
...e....
........

https://en.wikipedia.org/wiki/Scrabble

the program would print something like

Possible placements for cape:
 - horizontally at row 3, col 3
 - horizontally at row 4, col 2
 - vertically at row 3, col 7

If there is no placement, write “No placement found for [word]”.

Notes:

• You may assume the target word never has repeated le=ers. This simplifies the problem
a bit since each le=er on the board can match just one posiDon in the target.

• There is no requirement to check words against a dicDonary; you can assume all
occupied spaces contain valid words and the input word is valid.

• The board is rectangular with the same number of spaces in each row.
• Boards will be between 5 by 5 and 25 by 25, but there is no requirement that both

dimensions have the same size.

