
Installing and Configuring the Git client
The following sections list the steps required to properly install and configure the Git clients - Git Bash and Git GUI - on a Windows 7 computer.
Git is also available for Linux and Mac. The remaining instructions here, however, are specific to the Windows installation.

Be sure to carefully follow all of the steps in the first five sections. The last section, 6, is optional.

1. Git installation

Download the Git installation program (Windows, Mac, or Linux) from . http://git-scm.com/downloads

When running the installer, various screens appear (Windows screens shown). Generally, you can accept the default selections, except in the
screens below where you do NOT want the default selections:

In the screen, make sure is selected as shown:Select Components Windows Explorer Integration

In the dialog, it is strongly recommended that you - it isChoosing the default editor used by Git DO NOT select the default VIM editor
challenging to learn how to use it, and there are better modern editors available. Instead, choose - either of those is much or NanoNotepad++
easier to use. It is strongly recommended that you select Notepad++, BUT YOU MUST INSTALL NOTEPAD++ first! Find the installation with
Google.

http://git-scm.com/downloads

In the screen, all three options are acceptable:Adjusting your PATH

: no integration, and no extra commands in your command pathUse Git from Git Bash only
: adds flexibility - you can simply run git from a Windows command prompt, and is oftenUse Git from the Windows Command Prompt

the setting for people in industry - but this does add some extra commands.
: this is also a robust choice and useful if you like to use UnixUse Git and optional Unix tools from the Windows Command Prompt

commands like grep.

In the screen, select the middle option () as shown. This helps Configuring the line ending Checkout as-is, commit Unix-style line endings
migrate files towards the Unix-style (LF) terminators that most modern IDE's and editors support.The Windows convention (CR-LF line
termination) is only important for Notepad (as opposed to Notepad++), but if you are using Notepad to edit your code you may need to ask your
instructor for help.

a.

b.

c.

d.

2. Configuring Git to ignore certain files

This part is extra important and required so that your repository does not get cluttered with garbage files.

By default, Git tracks files in a project. Typically, this is what you want; rather, you want Git to ignore certain files such as . filesall NOT bak
created by an editor or . files created by the Java compiler. class To have Git ignore particular files, create a file named (automatically .gitignore
note that the filename begins with a dot) in the C:\users folder (where is your MSOE login name).\name name

NOTE: The .gitignore file must NOT have any file extension (e.g. .txt). Windows normally tries to place a file extension (.txt) on a file you
create from File Explorer - and then it (by default) HIDES the file extension. To avoid this, create the file from within a useful editor (e.g.
Notepad++ or UltraEdit) and save the file without a file extension).

Edit this file and add the lines below (just copy/paste them from this screen); these are patterns for files to be ignored (taken from examples
provided at .) https://github.com/github/gitignore

#Lines (like this one) that begin with # are comments; all other lines are rules

common build products to be ignored at MSOE
*.o
*.obj
*.class
*.exe

common IDE-generated files and folders to ignore
workspace.xml
bin/
out/
.classpath
uncomment following for courses in which Eclipse .project files are not checked in
.project

#ignore automatically generated files created by some common applications, operating
systems
*.bak
*.log
*.ldb
~*
.DS_Store*
._*
Thumbs.db

Any files you do want not to ignore must be specified starting with !
For example, if you didn't want to ignore .classpath, you'd uncomment the following rule:
!.classpath

Note: You can always edit this file and add additional patterns for other types of files you might want to ignore. Note that you can also have a
.gitignore file in any folder naming additional files to ignore. This is useful for project-specific build products.

Once Git is installed, there is some remaining custom configuration you must do. Follow the steps below:

From within File Explorer, right-click on any folder. A context menu appears containing the commands " " and "Git Bash here Git
". These commands permit you to launch either Git client. For now, select .GUI here Git Bash here

Enter the command (replacing as appropriate) name git config --global core.excludesfile c:/users/ /.name
gitignore

This tells Git to use the . file you created in step 2gitignore
NOTE: TO avoid typing errors, copy and paste the commands shown here into the Git Bash window, using the arrow
keys to edit the red text to match your information.

Enter the command git config --global user.email " @msoe.edu"name

This links your Git activity to your email address. Without this, your commits will often show up as "unknown login".
Replace name with your own MSOE email name.

3. Configuring Git default parameters

https://github.com/github/gitignore

c.

d.

e.

Enter the command git config --global user.name " "Your Name

Git uses this to log your activity. Replace " " by your actual first and last name. Your Name

Enter the command git config --global simplepush.default

This ensures that all pushes go back to the branch from which they were pulled. Otherwise pushes will go to the master
branch, forcing a merge.

4. Generating public/private key pairs for authentication

This part is critical and used to authenticate your access to the repository.

You will eventually be storing your project files on a remote Bitbucket or other server using a secure network connection. The remote server
requires you to authenticate yourself whenever you communicate with it so that it can be sure it is you, and not someone else trying to steal or
corrupt your files. Bitbucket and Git together user public key authentication; thus you have to generate a pair of keys: a public key that you (or
your instructor) put on Bitbucket, and a private key you keep to yourself (and guard with your life).

Generating the key pair is easy: From within File Explorer, right-click on any folder. From the context menu, select . The followingGit GUI Here
appears:

From the menu, select the command. The following pup-up dialog appears:Help Show SSH Key

1.
2.

3.

4.

Initially, you have no public/private key pair; thus the message " " appears withing the dialog. Press the button. TheNo keys found Generate Key
following dialog appears:

Do enter a passphrase - just press twice. When you do, the dialog disappears and you should see something like the following - but yourNOT OK
generated key will be different:

The keys have been written into two files named and in your folder (where is your MSOEid_rsa id_rsa.pub c:/Users/ /.sshusername username
user name). Don't ever delete these files! To configure Bitbucket to use this key:

Click on the button in the Git GUI Public Key dialog.Copy to Clipboard
Log in to BItbucket

Click on your picture or the icon in the left pane and select .Settings

4.
5.
6.

7.

1.
2.

1.
2.
3.

a.

b.
i.
ii.
iii.

iv.

c.

d.
i.
ii.
iii.

iv.

Select under .SSH keys Security
Click on the button.Add key
Enter a name for your key in the box in the Bitbucket window. If your key is ever compromised (such as someone gets a copy off ofLabel
your laptop), having a clear name will help you know which key to delete. A good pattern to follow is to name the computer used to
generate the key followed by the date you generated it; for instance: "MSOE laptop key 2012-02-28".
Paste the key from the Clipboard into the text box in the Bitbucket window, and add it.Key

You should now be able to access your repository from your laptop using the ssh protocol without having to enter a password. Protect the key
files - other people can use them to access your repository as well! If you have another computer you use, you can copy the id_rsa.pub file to the
.ssh folder on that computer or (better yet) you can generate another public/private key pair specific to that computer.

Configuring other repositories (such as GitLab) is very similar.

5. Authenticating with private keys

Linux, Mac users:

Open a terminal prompt.
Type the commands

eval `ssh-agent`
ssh-add

This assumes your key is in the default location, ~/.ssh/id_dsa. If it is somewhere else, type ssh-add Note that thepath-to-private-key-file.
path cannot be readable or writeable by others.

Windows users:

Install Pageant if it is not installed. It is usually installed with PuTTY and PuTTYgen.
Start Pageant and select .Add Key
Browse to your .ppk file, open it, and enter the passphrase if prompted.

If git pull or get push cannot connect, you might need to add a system variable set to the path to the executable. Go toGIT_SSH plink.exe
Windows Settings, enter "system environment" in the search box, open the "Edit the system environment variables" item, click on Environment
Variables..., then New... in the System Variables section (the bottom half), enter for the name, and browse to for the value.GIT_SSH plink.exe
Save the setting, then reboot your computer.

6. Optional: Configure Git to use a custom application (WinMerge) for comparing file

differences

It is recommended that you skip this step unless you really are attached to using WinMerge for file comparison tasks.

Enter the command git config --global merge.tool winmerge
This configures Git to use the application WinMerge to resolve merging conflicts. You must have WinMerge installed on

. your computer first Get WinMerge at . http://winmerge.org/downloads/
Enter the following commands to complete the WinMerge configuration:

git config --global mergetool.winmerge.name WinMerge
git config --global mergetool .trustExitCode.winmerge true
If you install WinMerge to the default location (that is, C:\Program Files (x86)\WinMerge), enter
git config --global mergetool.winmerge.cmd "\"C:\Program Files
(x86)\WinMerge\WinMergeU.exe\" -u -e -dl \"Local\" -dr \"Remote\" \$LOCAL \$REMOTE

 \$MERGED"
If you install WinMerge to an alternate location (for example, D:\WinMerge), enter
git config --global mergetool.winmerge.cmd "/d/WinMerge/WinMergeU.exe -u -e -dl \"Local\" -dr
\"Remote\" \$LOCAL \$REMOTE \$MERGED"

Enter the command git config --global diff.tool winmerge
This configures Git to use the application WinMerge to differences between versions of files.

Enter the commands to complete the WinMerge diff configuration:
git config --global difftool.winmerge.name WinMerge
git config --global difftool.winmerge.trustExitCode true
If you install WinMerge to the default location (that is, C:\Program Files (x86)\WinMerge), enter
git config --global difftool.winmerge.cmd "\"C:\Program Files

 -u -e \$LOCAL \$REMOTE"(x86)\WinMerge\WinMergeU.exe\"

http://user.name/
http://winmerge.org/downloads/
http://winmerge.org/downloads/
http://mergetool.winmerge.name
http://user.name/
http://difftool.winmerge.name

d.

iv. If you install WinMerge to an alternate location (for example, D:\WinMerge), enter
git config --global difftool.winmerge.cmd "/d/WinMerge/WinMergeU.exe
-u -e \$LOCAL \$REMOTE"

	Installing and Configuring the Git client

