
Generalization at Higher Types

Robert W. Hasker 1 and Uday S. Reddy
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

{hasker, reddy}@cs.uiuc.edu

1 Abstract

Finding the most specific generalization of first-order terms is well understood, but the generaliza-
tion of higher-order terms remains unsolved. We provide a framework for the second-order case
by using a categorical structure for terms and identifying a class of useful generalizations called
relevant generalizations. We show that complete sets of maximally specific generalizations exist
and are computable. Such generalizations have an important application for proof modification in
automated proof systems.

2 Introduction

Automated proof development systems, including program verification systems, program construc-
tion systems, and program transformation systems [4, 10, 2, 15] face the problem of how to incor-
porate modifications. Having constructed a proof for a theorem (or, a program for a specification)
as a combination of manual and automated effort, we would certainly not wish to redo the entire
effort when the theorem is slightly modified. There is no great damage in redoing the automated
part of the proof, but redoing the manual part of the proof manually could be too cumbersome.
An ideal automated system should be able to compare the old and new theorems, keep track of the
differences, and apply the steps of the old proof to the new theorem as long as they are applicable.
We call such a system a replay system.

A fundamental problem in building replay systems is drawing analogies between the old and
new theorems. The problem can be restated in terms of anti-unification [14, 16]. Given two terms
t and u, find the most specific generalization g of the two terms together with the attendant
substitutions θ : g → t and σ : g → u. The triple 〈g, θ, σ〉, called the anti-unifier of t and u,
contains the information necessary to relate the subterms of t and u.

If t and u are first-order terms, their first-order anti-unifier can be computed using well-known
techniques [14, 16, 8]. However, in modern proof systems the formulas and terms involved are
higher-order [7, 11, 10, 4]. Secondly, even if the terms are first-order, the first-order anti-unifier
does not contain enough information to relate all corresponding subterms. For instance, if a formula
A is replaced by a conjunction A ∧ B, the first-order anti-unifier gives the trivial generalization x,
loosing the information that A appears in both the formulas. Another common modification often
made is to add parameters to functions and predicates. However, the first-order anti-unifier of f(t)

1The work by Hasker was supported in part by a grant from Motorola Corp.



R. W. Hasker, U. S. Reddy 2

and g(t, u) is again trivial. Thus, higher-order generalization is necessary to compute analogies in
a replay system.

Surprisingly, even though the first-order anti-unification algorithms has been known since [14,
16], its higher-order counterpart does not seem to have received attention. Recently, [12] gave
an algorithm for anti-unifiers for a special class of terms called patterns (terms restricted so that
only abstraction variables can appear as arguments of a free variable), but the general case is yet
unsolved. The pattern restriction precludes using such anti-unifiers in replay systems because it
generates nearly the same anti-unifier as in the first-order case. In fact, the difficulties in generalizing
higher-order terms while allowing for common subterms are considerable. While first-order terms
form a complete lattice with unifiers as infs and anti-unifiers as sups, higher-order terms do not
even posses infs. Huet’s [8] “algorithm” computes a complete set of minimal unifiers, but the set
can be infinite. For the opposite direction of upper bounds, we show that complete sets do not
exist, in general. In fact, we believe that the näıve notion of “more general than” used in the
first-order case is not meaningful for higher-order terms.

In this paper, we consider the problem of generalization restricted to second-order terms. We
define the notion of generality using a categorical framework with substitutions as morphisms be-
tween terms. Complete sets of generalizations do not exist even in this setting, but we note that this
is due to certain trivial generalizations. By restricting attention to nontrivial generalizations (called
relevant generalizations), we find that complete sets exist and have interesting properties. We also
show that the complete sets are computable and give a semi-practical algorithm for computing
them.

3 Notation

We will generalize simply-typed λ-terms [3]. If C = ]τCτ is the set of constants and V = ]τVτ the
variables, then a term is well-typed if it is consistent with the rules

c ∈ Cτ

c : τ

x ∈ Vτ

x : τ

t : τ → τ ′ u : τ

t u : τ ′

x : τ t : τ ′

λx.t : τ → τ ′

We use the convention that constants are set in type and variables in italics. We assume all terms
are well-typed.

The order of a type τ is defined as

order(Di) = 1
order(τ → τ ′) = max(1 + order(τ), order(τ ′))

The order of a term is just the order of its type. In this paper, we assume all terms are first or
second-order, so all constants are in CD1→...→Dn and all variables in VD1→...→Dm for n, m ≥ 1.

We assume the usual α, β, and η conversion rules. All equivalences between λ-terms and
substitutions over λ-terms are assumed to be modulo λ-conversion. Application associates to the



R. W. Hasker, U. S. Reddy 3

left and → to the right; parentheses are often dropped when they are not needed. By the Church-
Rosser and strong normalization properties of typed λ-calculus (see, eg, [5]), every term of type
D1 → . . .→ Dn → Dn+1 can be written in the form2

λx1.λx2. · · ·λxn.hu1u2 . . . um

where each xi is distinct, h ∈ Cτ ∪ Vτ , and each ui is in normal form. We call h the head and u
the arguments. Following [8], we say that a term is flexible if its head is a free variable and rigid
otherwise (ie, if it is a constant or a bound variable). We will abbreviate terms in normal form
as λx1 · · ·xn.h(u1, . . . , um) or even as λxn.h(um) where xn denotes the sequence x1, . . . , xn. If n is
0, then xn is the empty sequence, and if n is arbitrary (but finite) we denote the sequence as just
x. The identity function λx.x is abbreviated as π and the general projection function λxn.xk as
πn

k . The set of free variables in the term t is FV(t), and the set of bound variables is BV(t). The
context of u in t is denoted t[u] or alternatively as t[α← u] if its position is relevant.

A substitution θ is a finite map from variables to type-equivalent terms with the domain de-
noted as dom(θ) and free variables in the range as ran(θ). θid denotes the identity substitution.
Application of θ onto term t is variously denoted by θ(t) and θ : t → u (where u = θ(t)). The
composition of two substitutions is defined as θ ◦ σ = λt.θ(σ(t)). To make substitutions easier to
read, we will often leave the variables being bound implicit: if the substitution θ is being applied
to term u, we may write it as [θ(x1), . . . , θ(xn)] where 〈x1, . . . , xn〉 are the free variables listed in
the order they occur when reading u from left to right.

4 The category of generalizations

First-order generalizations can be compared using the preorder v ≤ u ⇐⇒ ∃θ.θ : v → u. This
ordering is adequate because the substitution is unique, but in the higher-order case it often is not.
Category theory provides a framework which supports distinguishing between substitutions.

In this section we examine the category of terms and show that it is inadequate. This leads to
the category of generalizations and a discussion of its inadequacies.

Definition 4.1 Given a type τ , the category Tτ has as objects terms of type τ . The arrows of
Tτ are given by substitutions θ : t→ u such that dom(θ) = FV(t), ran(θ) = FV(u), and θ(t) = u.
The composition is substitution composition and the identity arrows are identity substitutions.

We often leave the type subscript τ implicit. When θ : t→ u we say that t is more general than u
(or conversely, u is more specific than t). But, θ indicates in what way t is more general than u.
For first-order terms, T is a preorder; ie, there is at most one substitution between any two terms.
For second-order terms, this is not the case; for example,

[λx.g(x, a)] and [λx.g(x, x)] : fa→ g(a, a)

That is, for the second order case, a term may generalize another in multiple ways. This is the
motivation for considering categories instead of preorders.

2Note that such forms are in normal form with respect to β, but not η.



R. W. Hasker, U. S. Reddy 4

Definition 4.2 If a ∈ T is a term, the category G(a)—of generalizations of a—has as its objects
substitutions θ : t → a for t ∈ T. A (generalization) morphism ρ : (θ1 : t1 → a) → (θ2 : t2 → a) is
a substitution ρ : t1 → t2 such that the following triangle commutes:

t2
θ2 - a

t1

ρ

6

θ 1

-

(G(a) is often called the “slice category” Tτ/a.)3

This definition can be extended to generalizations of multiple terms. We show the binary case:

Definition 4.3 If a1, a2 ∈ T, the category G(a1, a2) has as its objects pairs of substitutions
〈θ1 : t→ a1, θ2 : t→ a2〉. A morphism

ρ : 〈θ1 : t→ a1, θ2 : t→ a2〉 → 〈σ1 : u→ a1, σ2 : u→ a2〉

is a substitution ρ : t → u that is a generalization morphism in both G(a1) and G(a2). That is,
the following diagram commutes:

a1
� σ1

u
σ2 - a2

t

ρ

6

θ 2

-
�

θ
1

As an aside, note that G(a1, a2) is the pullback G(a1) ×T G(a2) in Cat. That is, if src is the
forgetful functor, the diagram

G(a1, a2)
π2- G(a2)

G(a1)

π1

? src - Tτ

src

?

commutes.

3Note that Tτ can itself be treated as a slice category Type/τ where Type is the category of types [9, 6].



R. W. Hasker, U. S. Reddy 5

Examples 4.4 The following examples illustrate that generalizations which include common sub-
terms are more specific:

Dc � [D]
hc

[E] - Ec

x

[hc]

6

[E
c]

-
�

[D
c]

These generalizations are not isomorphic because the only substitution from hc to x, {h 7→ λy.x},
is not a generalization morphism. In comparison, [12] disallows the more specific of the two gener-
alizations because hc is not a valid pattern. The only generalization meeting the pattern restriction
is 〈[Dc] : x 7→ Dc, [Ec] : x 7→ Ec〉, thus patterns do not capture common subterms.

λx.P(x) ∧ Q(x) � [∧]
λx.f(P(x),Q(x))

[∨] - λx.P(x) ∨ Q(x)

λx.g(P(x), x)

[λyz.f(y, Q(z))]

6

[λyz.
y ∨ Q(z)]

-�

[λyz.y ∧ Q(z)]

These are not isomorphic because there is no substitution from λx.f(P(x),Q(x)) to λx.g(P(x), x).

Examples 4.5 It is also instructive to examine generalizations which are unrelated by morphisms.
The first illustrates that for two generalizations to be related, subterms must be used consistently:

[λx.D(x, b)] : fa→ D(a, b) and [λx.D(a, x)] : gb→ D(a, b)

These are unrelated because any generalization morphism would have to eliminate the a (from
fa) or b (from gb). The second example illustrates that different substitutions give rise to unique
generalizations:

[λxy.E(x, x, y)] : λz.f(z, z)→ λz.E(z, z, z)

[λxy.E(y, x, x)] : λz.g(z, z)→ λz.E(z, z, z)

These are unrelated because the substitutions project distinct arguments.

Two generalizations g1 and g2 are isomorphic, written g1
∼= g2, if there are ρ : g1 → g2 and

ρop : g2 → g1 such that ρ ◦ ρop = θid = ρop ◦ ρ. We can show that isomorphisms are renamings.

Definition 4.6 ([12]) θ is a renaming iff for all f ∈ dom(θ), θ(f) = λx.h(x′) where h is a variable
and x′ is a permutation of x.

Lemma 4.7 g1
∼= g2 by ρ : g1 → g2 and ρop : g2 → g1 iff ρ and ρop are renamings.

This follows from the observation that whenever θ(σ(f)) = f and σ(f) = λx.t, t must be flexible
and all xi ∈ x occur in t.



R. W. Hasker, U. S. Reddy 6

Observation 4.8 ([a] : f → a) is initial in G(a).

This is because there is only one substitution between λx.f(x) and any term. Since θid is a left
identity,

Observation 4.9 θid : a→ a is terminal in G(a).

However, the morphisms of G(a) are not always unique:
Example 4.10

λx.h(x)
[π]- λx.x

λx.f(g(x))

[h, π], or
[π, h]

6

[π,
π]

-

Another difficulty is that G is not well-behaved with respect to maximal objects. Ideally, the
maximally specific generalizations of any two terms a and b would be the maximal objects of G(a, b).
However, the maximal objects are often undefined. The following examples show that the sources
of maximal objects have unbounded depth and width. We also show that the arbitrarily large terms
are not isomorphic to smaller terms, thus defining maximal objects up to an isomorphism would
not be sufficient.

Example 4.11 Consider G(Da,Eb), where a and b are arbitrary terms:

Da �
[D, π2

1] f(g(a, b))
[π1

1,E ◦ π2
2]- Eb

h(a, b)

[f ◦ g]

6

[E
◦ π

2
2
]

-
�

[D ◦ π 2
1 ]

Note that the two generalizations are not isomorphic because there is no generalization morphism
in the opposite direction. If ρ was such a morphism, then head(ρ(f)) = h or ρ(f) = π, but neither
choice allows both sides to commute simultaneously. Similarly, g can be mapped to f ′ ◦ g′ and so
on. A generalization morphism in the opposite direction can be found after a few repetitions of the
pattern, but the generalizations remain nonisomorphic.

Example 4.12 G(c, d) contains

[c] �
[π2

1] g(c, d, e)
[π2

2] - d

f(c, d)

[λxyz.f(x, y)]

?

[λxy.g(x, y, e)]

6

[π
2
2
]

-�

[π 2
1 ]



R. W. Hasker, U. S. Reddy 7

Again, these are not isomorphic. This example can also be generalized to an arbitrary number of
subterms in place of e. A similar situation occurs when bound variables are repeated arbitrarily
often:

Example 4.13 G(λx.Dx, λx.Ex) contains

λx.Dx �[λuvw.Du]
λx.g(x, x, x)

[λuvw.Ew]- λx.Ex

λx.f(x, x)

[λuvw.f(u,w)]

?

[λuv.g(u, u, v)]

6

[λuv.E
v]

-�

[λuv.Du]

5 Relevant generalizations

These examples show that while G may be more a suitable category in which to find maximal
generalizations than T, it is not ideal. We can improve on G by restricting attention to only those
generalizations which are relevant , where relevance means that each subterm is useful in forming
the generalization. In particular, the following definitions permit variables only when they are
necessary and permit rigid subterms only when they are actually used.

Example 4.11 suggests disallowing nested flexible subterms. We use the following definitions:

Definition 5.1 A generalization θ : t → a is said to be redundant if t has a subterm of the form
f(. . . , g(. . .), . . .) and θ(f) 6= f or θ(g) 6= g. We say that a generalization is condensed if it is not
redundant.

A variable in a condensed generalization must occur either at the outermost position or as an
argument of a constant. This bounds the depth of terms.

Examples 4.12 and 4.13 illustrate that we must limit the number of times subterms can appear.
The solution is to disallow most substitutions which eliminate subterms.

Definition 5.2 A substitution θ : t[f(u)]→ a is said to eliminate uk if θ(f) = λx.M and xk does
not occur in M .

That is, a subterm of f(u) is eliminated if θ(f) is independent of the corresponding abstraction.
This is a generalization of the definition of elimination introduced in [13].

Definition 5.3 A subterm uk of t[H(u)] is uneliminable if

i. uk 6∈ BV(t), or

ii. uk ∈ BV(t) and uk = uk′ for k′ 6= k.

Definition 5.4 A generalization θ : t → a in G(a) is cluttered if for some f ∈ dom(θ), θ(f)
eliminates an uneliminable subterm.



R. W. Hasker, U. S. Reddy 8

By disallowing cluttered generalizations, we bound the width of terms. However, some general-
izations which eliminate bound variables are allowed so that λxy.x and λxy.y can be generalized
(using λxy.f(x, y)).

Definition 5.5 A generalization g ∈ G(a) is said to be relevant if it is condensed and not cluttered.
Let R(a) be the full subcategory of G(a) consisting of relevant generalizations. Similarly, let R(a, b)
be the full subcategory of G(a, b) consisting of pairs of relevant generalizations.

Examples 5.6 The following generalizations are irrelevant:

λx.last(rev(x)) λx.head(x)

λx.f(g(x))
[π
, h

ea
d]
-

�

[last, rev]

This is redundant because of the
bindings of f and g.

append(x, l) cons(x, l)

g(cons(x, l))

[π
]

-
�[λz.append(x, l)]

This is cluttered because the sub-
term cons(x, l) is not eliminable.

λx.zerop(x) λx.x = x

λx.f(x, x)

[=
]

-�

[zerop ◦
π 2
1 ]

This is cluttered because x is not
eliminable.

If we ignore renamings,

Lemma 5.7 R(a) is finite.

This is because the number of constants is limited by the size of a, which limits the number of free
variables (since each must be separated by a constant), and the sum of the two limits the number
of bound variables. Since R(a, b) contains only pairs of objects from both R(a) and R(b),

Corollary 5.8 R(a, b) is finite.

Since the most specific generalization may not be unique, we define the set of maximally specific
generalizations:

Definition 5.9 MSG(a, b) is the least set of generalizations in R(a, b) such that ∀g ∈ R(a, b), ∃g′ ∈
MSG(a, b) such that g → g′ (up to an isomorphism).



R. W. Hasker, U. S. Reddy 9

Note that the least set exists because if g → g′1 and g → g′2 where g′1 ↔ g′2, then g′1 and g′2 are
isomorphic by Lemma 4.7.

Examples 5.10 Some maximal (relevant) generalizations:

λx.len(nodes(x)) λx.len(fringe(x))

λx.len(f(x))

[fr
in
ge

]

-
�

[nodes]

This is maximally specific
because len is the only
common constant.

sqr(2) sqr(sqr(2))

f(sqr(2)) or sqr(g(2))

[sq
r]

-
�

[π]

This illustrates how mul-
tiple maximal objects can
arise when there are dif-
ferent possible pairings.

λx.x + x + C(2) λx.x− C(2) ∗ x− C(2)

λx.f(x, x, C(2))[λ
ab

c.a
−c∗b

−C(2
)]

or

[λ
ab

c.a
−c∗b

−c]

-
�

[λabc.a +
b +

c]

Different ways of instan-
tiating can also lead to
multiple generalizations.
Note that there are more
generalizations as well.

5.1 Properties of R

G is not a preorder because its morphisms are not always unique. In this section, we show that
R is a preorder. This property is interesting in itself and also helps in showing the correctness of
our algorithm to compute the complete set of most specific generalizations. All the results of this
section extend to the binary case (and multiple term cases) because the morphisms of R(a, b) are
a subset of the morphisms of R(a) and R(b).

Lemma 5.11 Whenever g1, g2 ∈ R(a) and ρ : g1 → g2, ρ : src(g1)→ src(g2) is relevant.
Proof Let g1 be θ1 : t1 → a and g2 be θ2 : t2 → a. If ρ : t1 → t2 is not relevant, ρ eliminates a
subterm w of t1. But then θ2 ◦ ρ eliminates w; this contradicts θ2 ◦ ρ = θ1. Λ

Theorem 5.12 R(a) is a preorder.



R. W. Hasker, U. S. Reddy 10

We need to show that there is at most one morphism between any two generalizations.4 Consider
the commutative diagram

u
σ - a

t[f(w)]

ρ1

6

ρ2

6

θ

-

in R(a) and let f(w) be the outermost subterm of t such that f is a free variable and ρ1(f) 6= ρ2(f).
Observe that since ρ1 : t→ u and ρ2 : t→ u are relevant, there is at least one occurrence of ρ1(f(w))
and ρ2(f(w)) in u. Also observe that this occurrence must be the same for both ρ1 and ρ2 since
f is the outermost variable for which ρ1 and ρ2 differ. Call this occurrence u′. The key lemma for
showing that f does not exist is

Lemma 5.13 If ρ1(f) = πn
i , then ρ2(f) = πn

i .
Proof Since ρ1 : t → u is relevant, each w other than wi must be eliminable, so they are all
projections different from each other and different from wi. There are three cases:

1. head(wi) is a constant: wi is uneliminable, so ρ2(f) = πn
i .

2. head(wi) is a free variable: this case is impossible because ρ1 : t→ a is condensed.

3. wi ∈ BV(t): u′ = wi, so since there is no other wj = wi, ρ2(f) = πn
i .

Λ

This along with the existence of a u′ = ρ1(f(w)) gives us

Lemma 5.14 head(ρ1(f)) = head(ρ2(f)).

Proof of 5.12 We show ρ1(f) = ρ2(f). Suppose ρ1(f) = λx.K(M) for some constant K. Then
ρ2(f) is λx.K(N) by Lemma 5.14, and we use induction on the depth of substitutions (using a
multiset ordering) to show M = N by constructing the commutative diagram

u
σ - a

v

ρ′1

6

ρ′2

6

θ
′

-

t[f(w)]

φ

6

θ

-

4Note that renamings are not allowed.



R. W. Hasker, U. S. Reddy 11

in R(a) such that ρ1 = ρ′1 ◦ φ and ρ2 = ρ′2 ◦ φ. The following function is used to ensure θ′ : v → a
is relevant:

Definition 5.15

projected(xn, t) =
the 〈xj1 , . . . , xj′

n
〉 such that each xjk

∈ {xn}, all jk < jk+1, and xjk
occurs in t

Then let

θ(f) = λxn.K(P )
νi = projected(xn,Mi) ∪ projected(xn, Ni)
φ = {f 7→ λxn.K(h1(ν1), . . . , hm(νm))}

ρ′1 = ρ1 \ f ∪ {h1 7→ λν1.M1, . . . , hm 7→ λνm.Mm}
ρ′2 = ρ2 \ f ∪ {h1 7→ λν1.N1, . . . , hm 7→ λνm.Nm}
θ′ = θ \ f ∪ {h1 7→ λν1.P1, . . . , hm 7→ λνm.Pm}

(where each hm is a free variable occurring nowhere else). Note that projected(xn, Pi) must be a
subsequence of νi since σ cannot introduce abstractions. Furthermore, if Ni eliminates xj in νi,
then wj is eliminable. This is because if xj does not appear in Ni, it must be eliminated by σ from
Mi, so it must be in the scope of a free variable f ′′ in Mi. Since σ : u→ a is uncluttered and wj is
eliminated by σ(f ′′), wj must be eliminable. Thus θ′ : v → a is relevant and we can use induction
to show ρ′1(f) = ρ′2(f).

A similar argument is used when the head of both ρ1(f) and ρ2(f) is a free variable, g, except
that the details must be modified to ensure θ′ : v → a is condensed. Observe that the arguments to g
must be rigid terms (unless ρ1(f) = f and ρ1(g) = g, in which case ρ2(f) = f and ρ2(g) = g because
ρ2 : v → u is relevant). Thus ρ1(f) = λxn.g(Mm) and ρ2(f) = λxn.g(Nm) where Mi = Gi(ri,pi)
and Ni = Hi(si,qi). We first show that for each k, Hk = Gk. Since σ ◦ ρ1 = θ = σ ◦ ρ2,
σ(g ◦ 〈. . . , Gk, . . .〉) = σ(g ◦ 〈. . . , Hk, . . .〉) and so σ(Gk) = σ(Hk). Thus Gk = Hk since both are
rigid.

We use induction to show that the rest of ρ1(f) and ρ2(f) are the same. Assuming θ(f) is
λxn.g(H1(r′1,1, . . . , r

′
1,p1

), . . . ,Hm(r′m,1, . . . , r
′
m,pm

)), let

νi,j = projected(xn, ri,j) ∪ projected(xn, si,j)
φ = {f 7→ λxn.g(H1(h1,1(ν1,1), . . . , h1,p1(ν1,p1)), . . . ,

Hm(hm,1(νm,1), . . . , hm,pm(νm,pm)))}
ρ′1 = ρ1 \ f ∪ {h1,1 7→ λν1,1.r1,1, . . . , hm,pm 7→ λνm,pm .rm,pm}
ρ′2 = ρ2 \ f ∪ {h1,1 7→ λν1,1.s1,1, . . . , hm,pm 7→ λνm,pm .sm,pm}
v = φ(t)
θ′ = θ \ f ∪ {h1,1 7→ λν1,1.r

′
1,p1

, . . . , hm,pm 7→ λνm,pm .r′m,pm
}

Again ρ′1 = ρ′2 by induction, hence ρ1 = ρ2.
Since morphisms are unique and θid is a morphism from any generalization to itself,



R. W. Hasker, U. S. Reddy 12

Corollary 5.16 R(a) is a partial order.

This allows us to introduce the following notation:

Definition 5.17 Whenever g1 → g2 is in R(a), we say g1 is less specific (or, equivalently, more
general) than g2. This is written as g1 ≤ g2. Furthermore, we write g1 < g2 if g2 → g1 is not in
R(a).

6 Computing MSG

R(a, b) is finite, so since second-order matching is decidable and λ-terms are recursively enumerable,
we can compute MSG(a, b) by generating R(a, b) and comparing all its objects against each other.
Thus, MSG(a, b) is computable, albeit inefficiently. A more practical algorithm is suggested by the
observation that when the substitutions contain a common subterm, then they can be made more
specific by factoring out the common term.

The steps for specializing generalizations of a and b are given by the following rewrite relation
−→. The algorithm is restricted to generalizing ground terms; non-ground terms can be handled
by “freezing” the variables; that is, replacing them by unique constants. The −→ steps maintain
the invariants

θ1 : t→ a
θ2 : t→ b
〈θ1 : t→ a, θ2 : t→ b〉 is relevant
if g1 −→ g2, g1 < g2

To compute MSG(a, b), we start with the initial object of R(a, b) and continue specializing the
generalization until no −→ step is applicable. To simplify the notation, we represent each general-
ization 〈θ1 : t→ a, θ2 : t→ b〉 by the triple 〈t, θ1, θ2〉.

Delete-variable Variables with the same binding in both substitutions can be removed:

〈t, θ1 ∪ {f 7→M}, θ2 ∪ {f 7→M}〉 −→ 〈{f 7→M}(t), θ1, θ2〉

Merge Likewise, variables with the same bindings within each substitution can be merged:

〈t,
θ1 ∪ {f 7→M, g 7→M},
θ2 ∪ {f 7→ N, g 7→ N}〉

−→
〈{g 7→ f}(t),
θ1 ∪ {f 7→M},
θ2 ∪ {f 7→ N}〉

Delete-abstraction Subterms which are not projected by either substitution can be eliminated:

〈t,
θ1 ∪ {f 7→ λxzy.M},
θ2 ∪ {f 7→ λxzy.N}〉

−→
〈{f 7→ λxzy.f ′(x, y)}(t),
θ1 ∪ {f ′ 7→ λxy.M},
θ2 ∪ {f ′ 7→ λxy.N}〉

where z does not occur in either M or N .



R. W. Hasker, U. S. Reddy 13

Factor-constant Constants that appear in both substitutions can be factored. This step is
complicated because it must introduce new function variables for generalizing the subterms and it
must not create cluttered terms.

〈t,
θ1 ∪ {f 7→ λx.M [K(u)]},
θ2 ∪ {f 7→ λx.N [K(v)]}〉

−→

〈{f 7→ λx.f ′(K(h1(ν1), . . . , hn(νn)), ν0)}(t),
θ1 ∪ {f ′ 7→ λzν0.M [∀α ∈ α̂, α← z],

h1 7→ λν1.u1, . . . , hn 7→ λνn.un},
θ2 ∪ {f ′ 7→ λzν0.N [∀β ∈ β̂, β ← z],

h1 7→ λν1.v1, . . . , hn 7→ λνn.vn}〉

where
K is a constant,
n is the arity of K,
hi occurs no where else (for 1 ≤ i ≤ n),
α̂ is a nonempty subset of the positions at which K(u) occurs in M ,
β̂ is a nonempty subset of the positions at which K(v) occurs in N ,
ν0 = projected(x,M [∀α ∈ α̂, α← z]) ∪ projected(x,N [∀β ∈ β̂, β ← z])

(see Definition 5.15 for projected), and
νk = projected(x, uk) ∪ projected(x, vk).

If the new θ1 or θ2 of some hk (or f ′) would eliminate an uneliminable subterm, then this step is
not applicable (with the chosen α̂ and β̂) because it would form a cluttered generalization.

Factor-abstraction Repeated bound variables can be factored in much the same way as con-
stants except that there is no need to introduce new free variables:

〈t,
θ1 ∪ {f 7→ λx.M [xi]},
θ2 ∪ {f 7→ λx.N [xi]}〉

−→
〈{f 7→ λx.f ′(xi, x)}(t),
θ1 ∪ {f ′ 7→ λzx.M [∀α ∈ α̂, α← z]},
θ2 ∪ {f ′ 7→ λzx.N [∀β ∈ β̂, β ← z]}〉

where xi is in x, xi occurs in at least one other position in both M and N , and α̂ and β̂ are proper,
nonempty subsets of the positions at which xi occurs. (α̂ and β̂ must be proper subsets so that the
new generalization is not cluttered.)

Using −→, the set MSG can be computed by gen defined as

gen(a, b) = {g | 〈f, [a], [b]〉 −→∗ g, and 6 ∃g′.g −→ g′}

where −→∗ is the transitive closure of −→.
This algorithm is expensive because it requires exponential time and recomputes the same

generalizations in different ways. Furthermore, some pairs of terms have an exponential number of
generalizations, so there is no polynomial-time algorithm based on the size of the input. It is not
yet clear if a polynomial-time algorithm exists based on the number of generalizations.

The proof this algorithm’s correctness depends upon showing that the set of−→ rules completely
specifies when one generalization is strictly less instantiated than another. First we give some
lemmas:



R. W. Hasker, U. S. Reddy 14

Lemma 6.1 If g1 ∈ R(a, b) and g1 −→ g2, then g2 ∈ R(a, b).

Lemma 6.2 Whenever g1, g2 ∈ R(a, b) and g1 −→ g2, g1 < g2.
Proof Observe that each step is of the form 〈t, θ1, θ2〉 −→ 〈ρ(t), θ′1, θ

′
2〉 where ρ is a generalization

morphism. This shows g1 ≤ g2. Furthermore, ρ is not a renaming substitution, so by Theorem 5.12
there is no ρop : g2 → g1. Λ

Finally, we show that −→ steps do not reduce the number of possible generalizations. That is,
given a specific generalization, the set of −→ steps completely covers all maximal generalizations
which are more instantiated than the given one.

Lemma 6.3 Whenever g′v ∈ MSG(a, b), gt ∈ R(a, b), and gt < g′v, there is a gu ∈ R(a, b) and a
gv
∼= g′v such that gt −→ gu and gu ≤ gv.

Proof Assume

gt = 〈θ1 : t→ a, θ2 : t→ b〉
gu = 〈σ1 : u→ a, σ2 : u→ b〉
gv = 〈φ1 : v → a, φ2 : v → b〉

Then the following diagram illustrates this lemma:

a � φ1
v

φ2 - b

u

ρu

66

σ 2

-
�

σ
1

t

ρt

6 ρv

θ 2

-
�

θ
1

Choose an f ∈ domρv such that ρv(f) is not a renaming substitution unless all substitutions are
renamings. Let

ρv(f) = λx.H(w)
θ1(f) = λy.M

θ2(f) = λy.N

Furthermore, assume that if λx.H(w) is a renaming substitution, then H ∈ domρv and ρv(H) = H.
Observe that such an f exists because gt < gv. We will show that for any λx.H(w), there is a −→-
step which generates an appropriate gu. In most cases, we only identify which step is applicable;



R. W. Hasker, U. S. Reddy 15

refer to the algorithm for the details of constructing gu and ρu. Note that if there is a step to create
gu, then gu ∈ R(a, b) by Lemma 6.1.

There are three cases based on the form of H.

1. H is xi in x: θ1(f) = φ1(ρv(f)) = πi = φ2(ρv(f)) = θ2(f), so Delete-variable is applicable.

2. H is a constant K: head(θ1) = head(φ1(ρv(f))) = K = head(φ2(ρv(f))) = head(θ2), so
Factor-constant is applicable.

3. H is a free variable (say g): Since we are only interested in finding an isomorphism of g′v, we
can reorder the arguments to g as g(x1, . . . , xk, wk+1, . . . , wn) (with corresponding reorderings
to φ1(g) and φ2(g)) such that k is the smallest integer for which wk+1 6= xk+1.

If k = n, then θ1(f) = φ1(ρv(f)) = φ1(g) and by assumption θ1(g) = φ1(ρv(g)) = φ1(g).
Thus θ1(f) = θ1(g). Likewise, θ2(f) = θ2(g). Hence the Merge step is applicable.

If k < n, then there are four cases depending upon the form of wk+1:

(a) wk+1 is flexible: this would make gv redundant, a contradiction.

(b) wk+1 = xi for i ≤ k: yi occurs more than once in both M and N and so a Factor-
abstraction step is applicable. Pick α̂ and β̂ such that the occurrences of yi in σ1(f ′)
and σ2(f ′) match those in φ1(g) and φ2(g).

(c) wk+1 = xi for i > k + 1: yk+1 does not occur in either M or N and so a Delete-
abstraction step is applicable.

(d) wk+1 = K(s) where K is a constant: because gv is not cluttered, K must occur in both
M and N , thus a Factor-constant step is applicable. Again, pick α̂ and β̂ such that
the occurrences of K in σ1(f ′) and σ2(f ′) match those in φ1(g) and φ2(g).

Λ

Theorem 6.4 (Soundness) If g ∈ gen(a, b), then g ∈ MSG(a, b).
Proof By Lemmas 6.1 and 6.2, if g ∈ gen(a, b) then g ∈ R(a, b). g is maximal by Lemma 6.3. Λ

Theorem 6.5 (Completeness) If g is in MSG(a, b), then there is a generalization g′ in gen(a, b)
which is isomorphic to g.
Proof By Observation 4.8, we know that g0 is less specific than any generalization of a and
b, so by Lemma 6.3 we know that for any g there is a sequence of −→ steps from g0 to some g′

isomorphic to g. This sequence is finite because < is well-founded and g1 −→ g2 implies g1 < g2. Λ



R. W. Hasker, U. S. Reddy 16

7 Conclusion

We provide a framework for unsolved problem of generalizing second-order terms. Our solution is
based on viewing the structure of terms as a category rather than a partial order. The categorical
view allows us to capture how one term generalizes another, which is not possible in the conventional
structure of complete lattices [14, 16].

Second-order generalization seems eminently useful for generalizing first-order terms in a useful
fashion. For instance, A and A ∧ B have the maximal generalization

〈[π] : f(A)→ A, [λx.x ∧ B] : f(A)→ A ∧ B〉

showing that A is replaced by a conjunction in going to A ∧ B. This information is lost in the
corresponding first-order most specific generalization. Similarly, going to third and higher orders
would improve the quality of generalization. More importantly, base terms of higher orders also
necessitate going to higher orders. We intend to pursue this in future work.

Acknowledgements

The authors would like to thank John Gray for useful discussions on category theory and the
anonymous reviewers for a number of helpful comments. We would also like to thank Paul Taylor
for the macros used to generate the diagrams.

References

[1] Michael A. Arbib and Ernest G. Manes. Arrows, Structures, and Functors: The Categorical
Imperative. Associated Press, New York, 1975.

[2] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New York, 1979.

[3] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56–58,
1940.

[4] R. L. Constable, et. al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, New York, 1986.

[5] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University
Press, Cambridge, 1989.



R. W. Hasker, U. S. Reddy 17

[6] Joseph A. Goguen. What is unification? A categorical view of substitution, equation, and
solution. In Hassan Aı̈t-Kaci and Maurice Nivat, editors, Resolution of Equations in Algebraic
Structures, volume 1, chapter 6, pages 217–261. Academic Press, 1989.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Proceedings,
Symposium on Logic in Computer Science, pages 194–204, Ithaca, New York, June 1987.
IEEE Computer Society Press.

[8] Gérard Huet. Résolution d’équations dans des langages d’order 1, 2, . . . , ω (these d’etat),
December 1976.

[9] F. William Lawvere. Functional semantics of algebraic theories. In National Academy of
Sciences, 1963.

[10] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal of Logic Pro-
gramming, 3:237–258, 1986.

[11] Frank Pfenning. Elf: A language for logic definition and verified meta-programming. In
Proceedings, Fourth Annual Symposium on Logic in Computer Science, pages 313–322, Pacific
Grove, California, June 1989. IEEE Computer Society Press.

[12] Frank Pfenning. Unification and anti-unification in the calculus of constructions. In Proceed-
ings, Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85, Amsterdam,
The Netherlands, July 1991. IEEE Computer Society Press.

[13] T. Pietrzykowski. A complete mechanization of second-order type theory. Journal of the ACM,
20(2):333–365, April 1973.

[14] Gordon D. Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
chapter 8, pages 153–163. American Elsevier, New York, 1970.

[15] U. S. Reddy. Transformational derivation of programs using the Focus system. SIG-
SOFT Software Engineering Notes, 13(5):163–172, November 1988. Proceedings, ACM SIG-
SOFT/SIGPLAN Third Software Engineering Symposium on Practical Software Development
Environments; also published as SIGPLAN Notices, Feb. 1989.

[16] John C. Reynolds. Transformational systems and the algebraic structure of atomic formulas. In
Machine Intelligence, volume 5, chapter 7, pages 135–151. Edinburgh Univ. Press, Edinburgh,
1970.


