

The Characterization and Identification of

Object-Oriented Model Defects

Mike Rowe and Robert W. Hasker
Computer Science and Software Engineering Department

University of Wisconsin – Platteville
Platteville, Wisconsin 53818

rowemi@uwplatt.edu, hasker@uwplatt.edu

Abstract

This paper presents a study of defects that commonly occur in object-oriented modeling.
The study is based on experience from teaching more than a dozen sections of an Object-
Oriented Analysis and Design course to sophomore and junior-level Software
Engineering and Computer Science majors over the last eight years. The students use
IBM (Rational) Rose as the design tool.

The goal of this research is to eventually provide real-time and anytime feedback for
students as they develop their object-oriented models. It is hoped that this instant
feedback will help students by discouraging them from developing bad habits and
guiding them in the development of superior software models.

mailto:rowemi@uwplatt.edu
mailto:hasker@uwplatt.edu

1 Introduction
While teaching the Object Oriented Analysis and Design course, we have observed that
many software modeling defects occur multiple times, year after year. This paper
categorizes these common defects by type of model: Use Case, Class, and Interaction
and State. Examples of these defects as well as manual methods and potentially
automated techniques for identifying some of these defects are described. This paper
serves two goals: to provide a (non-exhaustive) catalog of errors that could be made
available to students so they might be less likely to introduce the same defects, and to
generate feedback from other instructors about these errors.

Eventually, it is hoped that satisfactory automated techniques will be made available for
students and their instructors to help rapidly detect these defects and provide feedback to
remedy the problem. The automated techniques proposed by this paper are of two types.
The first automated approach involves the generation of C++ source code from the
models, compiling it and studying the compilation errors. The second approach involves
parsing Rose model (MDL) files to find specific defects directly.

The defects cataloged in this paper are based on having taught multiple sections of an
Object-Oriented Analysis and Design course over the past eight years. This course
covers modeling using the UML notation, though of course the concepts extend beyond
any particular syntax. The students in the course are typically at the sophomore and
junior level. The prerequisites are a course on fundamental data structures (CS2) and a
project-based course on software engineering. Thus students are quite familiar with
object-oriented programming and have already been introduced to some basic issues of
object-oriented design. This course attempts to move students from applying the
techniques on small problems towards modeling larger systems.

2 Related Work
Automated detection of defects in UML diagrams has received attention from a number
of researchers [1][3][7][8][9][10][11][12]. However, these works focus on improving
diagrams for professional developers. This paper focuses on errors typically made by
students – people who are not only learning UML, but also learning basic issues about
how to apply modeling in general.

This paper discusses errors typically made by students. [2] and [13] also examine errors
made by students, but these catalog only a few errors and some of these are controversial.
[5] and [14] discuss common errors in more depth, but focus on errors made by CS1
students. This paper discusses errors made by students at the sophomore/junior level.
These are students who already have a basic understanding of object-oriented
programming but do not yet appreciate certain subtleties of both modeling and object-
oriented design.

3 Use Case Model Defects
There are a number of frequent defects in use case models: failing to use verb phrases for
cases, misusing extends and includes, and use cases which capture insignificant
interactions.

3.1 Use Case Titles That Are Not Verb Phrases
Description: Use cases are common uses of a system that describe how an actor or actors
obtain a significant benefit from a system. Since they describe this process of obtaining a
benefit, they are best titled as verb or verb-object phrases.

Detection: Use case titles are generally concatenated strings of two or more words. This
makes it difficult to parse the strings into separate words unless some syntax is enforced
such as “camel case” or underscore word separators. If the syntax allows parsing, the
component words in the use case title can be compared to a lexicon or use natural
language technology to recognize parts of speech. If a use case title is used inside of the
scenario, parsing the use case title in the syntax of the sentence may be able to reveal its
part of speech.

3.2 Misuse of Extends and Includes
Description: Use case extensions and inclusions are often confused. Most students can
give the strong definitions of these constructs, but often confuse the direction of the
arrows when producing use case diagrams. For an “include” relationship, the arrow
should be on the included use case side, whereas with an “extension” relationship, the
arrow should be on the far side of the extending use case.

Detection: This may be difficult to detect with only the use case diagram. A solution
may be to cross check the diagram against use case scenarios. Formal use case scenarios
typically list extensions and inclusions. By locating the use case scenario title in the use
case model, we can analyze the model from this point, comparing the model’s extends
and includes against the scenario’s. The automatic checking for this defect would rely on
very specific use case scenario templates.

3.3 Insignificant Use Cases
Description: The goal of a use case is to provide a significant benefit to an actor
associated with that use case. Use cases without a significant benefit should be combined
with others.

Detection: The above definition does not meet many of the IEEE STD 830 [6]
characteristics of “good” requirements. To say the least, this does not meet the test of
verifiability, in that we would be hard pressed to obtain universal consensus on precisely
what is meant by “significant benefit”. We believe that certain cases can be defined and
recognized, but further research is needed in this area.

4 Class Model Defects
Because they are richer, the number of potential errors in class models is larger.

4.1 Non-noun Class Names
Description: Classes are the stuff from which objects are made, and objects are nouns.
Students frequently name classes using verbs, possibly because they are focusing on the
actions performed as part of the class rather than the object which performs those actions.

Detection: The detection of non-noun class names could be partially automated by
parsing scenarios, identifying which words are used most frequently as nouns, adjectives,
or verbs, and using this information to identify misused words in class names.

4.2 Reversed Multiplicities
Description: The collection class of an aggregation or composition should have a
multiplicity of ‘1’, whereas the parts can have any multiplicity. This mistake is also
commonly seen with other class relationships.

Detection: This can be detected with aggregation and composition, when the collection
class has a multiplicity not equal to ‘1’. See Figure 1 for a UML example of reversed
multiplicities and Figure 2 for a corresponding MDL file snippet. With non-collection
relationships, this cannot be easily detected without domain knowledge about the classes
and their relationship.

Collection PartOf
11..n 11..n

Figure 1: UML model with reversed multiplicities

// snippet from MDL file
root_category (object Class_Category "Logical View"
 quid "47BD93AC01B0"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD93AC01B2"
 logical_models (list unit_reference_list
 (object Class "Collection"
 quid "47BD942B03D2")
 (object Class "PartOf"
 quid "47BD942F0346"
 documentation "A part of the collection.") // *
 (object Association "aggregation"

 quid "47BD943502E8"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47BD94360384"
 supplier "Logical View::PartOf"
 quidu "47BD942F0346"
 client_cardinality (value cardinality "1") // multiplicity of part of: 1
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47BD94360395"
 supplier "Logical View::Collection"
 quidu "47BD942B03D2"
 client_cardinality (value cardinality "1..n") // multiplicity of Collections: 1..n
 is_navigable TRUE
 is_aggregate TRUE)))) // indicates Collection is an aggregate

Figure 2: Rose MDL file snippet for defective aggregation multiplicities.

4.3 Only Public Operations and Attributes in Implementation-level
Models

Description: An implementation-level class diagram should be at the detail that goes
beyond interfaces and public operations. If almost all operations across all classes are
public, then either the model not have enough detail to include private operations or the
designer has not properly identified which functions should be private. In either case,
there is a problem. Generally, it is hard to defend the concept that any class attribute
should be public.

Detection: The detection of this defect is as simple as calculating a percentage of public
to non-public operations in a class model. As long as the percentage is larger than some
arbitrary value (well less than 100%) then this defect may be present. An acceptable
percentage will depend on the domain, the design, and the expected level of detail in the
design. Recognizing any public attributes can also be flagged as very likely defects

4.4 Classes, Operations, and Attributes without Documentation
Description: Rose class models allow the designers to add documentation to classes,
operations, attributes, and operation parameters. This documentation is inserted into the
source code that is generated from a class model. Documenting the elements while
designing the system is an excellent practice since this is when designers are most likely
to be intimate with both the requirements and the elements of the design that satisfy those
requirements.

Detection: Identifying missing documentation is straightforward. The line marked by an
asterisk in Figure 2 marks the documentation for class part of (“a part of the collection”).
In contrast, class Collection, listed a couple lines earlier in the file, is missing its
documentation.

4.5 Associations without Navigation Attributes

Description: Navigational attributes are reference or pointer variables that allow one
class to access another class. In a class model, they are part of the reference and on the
side of the navigational arrow. When code is generated from a class model, a
navigational attribute produces a reference or pointer class variable of the type of the
associated class.

Detection: Detection of missing navigational attributes can be detected by processing the
Rose MDL file’s references for missing navigational attributes. See Figure 3 for UML
model, Figure 4 for MDL file associated with the UML, and Figure 5 for C++ code auto-
generated by Rose from the model.

This “rule” is somewhat controversial: some instructors would prefer students to generate
diagrams with less redundancy in them. This illustrates a basic requirement for any
automated system: it must be possible for instructors to select which rules to apply for a
particular course or even assignment.

ClassA ClassB

ClassC ClassD+refClassD

Missing navigational
Reference

With navigational
Reference

Figure 3: UML without and with navigational references

logical_models (list unit_reference_list
 (object Class "ClassA"
 quid "47BDA0820067")
 (object Class "ClassB"
 quid "47BDA08500A6")
 (object Class "ClassC"
 quid "47BDA087023C")
 (object Class "ClassD"
 quid "47BDA08A00F4")
 (object Association "$UNNAMED$0"
 quid "47BDA0B803B3"
 roles (list role_list
 (object Role "$UNNAMED$1" // Un‐named navigational reference
 quid "47BDA0B903E2"
 supplier "Logical View::ClassB" // type of reference
 quidu "47BDA08500A6"
 is_navigable TRUE) // Navigable

 (object Role "$UNNAMED$2"
 quid "47BDA0B903E4"
 supplier "Logical View::ClassA"
 quidu "47BDA0820067")))
 (object Association "$UNNAMED$3"
 quid "47BDA0BD01EE"
 roles (list role_list
 (object Role "refClassD" // named navigational reference
 quid "47BDA0BE021D"
 label "refClassD"
 supplier "Logical View::ClassD" // type of reference
 quidu "47BDA08A00F4"
 is_navigable TRUE) // Navigable
 (object Role "$UNNAMED$4"
 quid "47BDA0BE021F"
 supplier "Logical View::ClassC"
 quidu "47BDA087023C"))))

Figure 4: MDL file snippet of relationships without and with navigational references

//##ModelId=47BDA0820067
class ClassA // notice no reference to Class B is generated
{
};

class ClassC
{
 public: // this is the generated reference to Class D
 //##ModelId=47BDA0BE021D
 ClassD *refClassD;
};

Figure 5: Code auto-generated from Rose without (ClassA) and with (ClassC)
navigational references.

4.6 Attributes and Operations that are not Typed
Description: At the implementation level, class model attributes, operations, and
operation parameters need to be typed to support code development.

Detection: This defect can be detected by using Rose to generate source code from the
class model and compiling it. Non-typed identifiers are not permitted in many high-level
languages and will produce syntax errors. For example, the C++ code generated for
NonTypedClass in Figure 6 is

Class NonTypedClass { public: opp(void agr1); private: att1; };

NonTypedClass
att1

opp(agr1)

TypedClass
attr : String

opp(arg1 : String) : String

Figure 6: UML without and with typed attributes, operations, or operation arguments

4.7 Illegal Identifiers for Target Language
Description: Classes should not be a dead end in a software development process. The
class names, attributes, operations, and parameters of the model produce the identifiers in
the generated source code. If illegal identifiers are used in the model, they will appear in
the generated code.

Detection: This defect can be detected by using Rose to generate source code from the
class model and compiling it. The compiler will produce errors relating to these illegal
identifiers. Below is an example of a class with illegal C++ identifiers as they contain
embedded spaces, “attr One”, “opp Two”, and “arg Three”. When the Rose-generated
code is compiled, parse errors result on the identifiers.

Bad_Id_Class
attr One : String

opp Two(arg Three : String) : String

Figure 7: A class with incorrect identifiers for an attribute, an operation, and a parameter
of the operation

4.8 Inheritance Arrows in the Wrong Direction
Description: A common student error is that to reverse the inheritance arrows, placing
the inheritance arrow on the child rather than the parent side of the relationship.

Detection: In general it could be very difficult to identify reversed inheritance arrows
automatically. However, it is possible in some cases: given that multiple inheritance is
rare in student solutions, a class with multiple outgoing generalization arrows suggests
the presence of an error. Common cases in which multiple inheritance is encouraged,
such as for the Composite Pattern [4] shown in Figure 8, can be detected as special cases.

Figure 8: An application of the Composite Pattern in which Picture inherits two
interfaces

4.9 Duplicate Operations in Multiple Classes
Description: It is relatively rare for an operation to be duplicated in multiple classes
(except to support inheritance) in class projects. Duplicated operations often indicate
poor class cohesion or misplaced operations. While duplicated operations certainly do
not indicate an actual defect, they can trigger a message discussing the concern.

Detection: This type of defect can be detected by scanning the Rose model file for
duplicate operation names. The danger is leading students to believe that all duplication
is invalid. Some generic operations, such as “sort” or “find” are likely to appear in
several classes. Filtering out common operation names is likely to be necessary to avoid
teaching students invalid concepts.

NewClass

dupOp()

NewClass2

dupOp()

Figure 9: UML of two classes with the same operation

4.10 Classes without Attributes and/or Operations
Description: Once a model gets to the design or implementation phases, it should have
at least one unique attribute or operation. Classes without attributes or operations imply
either that the class may have been motivated by the analysis but not be relevant to the
final system or that the model is incomplete.

Detection: This type of defect can be spotted by scanning the Rose MDL file for classes
that do not have “(object operation…” for class operations or “(object ClassAttribute…”
class attribute entries.

NewClass
NewClass2
attr : string

nonEmpty()

Figure 10: UML of an empty and non-empty class. The non-empty class contains the
operation nonEmpty().

root_category (object Class_Category "Logical View"
 quid "47BD9B0402AA"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD9B0402AC"
 logical_models (list unit_reference_list
 (object Class "NewClass" // empty Class
 quid "47CC0AAE03D8")
 (object Class "NewClass2" // non‐empty Class
 quid "47CC0AB102EE"
 operations (list Operations
 (object Operation "nonEmpty" // non‐empty Class has an Operation
 quid "47CC10170157"
 result "void"
 concurrency "Sequential"
 opExportControl "Public"
 uid 0))
 class_attributes (list class_attribute_list
 (object ClassAttribute "attr" // non‐empty Class has an Attribute
 quid "47CC204E0177"
 type "string"))))

Figure 11: Rose MDL file snippet of empty and non-empty classes.

4.11 Classes that are not Associated with Other Classes
Description: Classes interact with each other, providing and using services. To be
useful in a system, classes need to be associated with other classes.

Detection: This type of defect can be spotted by scanning the Rose MDL for classes
which are never referenced in the “(object Association . . .” lists. See the lines annotated
with “//” comments in Figure 12.

NewClass NewClass2

NewClass3 NewClass4navToClass4

Figure 12: UML example of two classes without associations and two classes with
associations.

root_category (object Class_Category "Logical View"
 quid "47BD9B0402AA"
 exportControl "Public"
 global TRUE
 subsystem "Component View"
 quidu "47BD9B0402AC"
 logical_models (list unit_reference_list
 (object Class "NewClass"
 quid "47CC0AAE03D8")
 (object Class "NewClass2"
 quid "47CC0AB102EE")
 (object Class "NewClass3"
 quid "47CC21E900DA")
 (object Class "NewClass4"
 quid "47CC21EE038A")
 (object Association "navToClass4"
 quid "47CC21F501B5"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47CC21F60109"

 supplier "Logical View::NewClass4" // Associated Class
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47CC21F6010B"

 supplier "Logical View::NewClass3" // Associated Class
 quidu "47CC21E900DA"))))

Figure 13: MDL file of two classes without associations (NewClass1 and NewClass2)
and two classes with associations (NewClass3 and NewClass4).

4.12 Very High Class Coupling
Description: Good object-oriented design strives for low coupling and high cohesion.
High coupling is associated increased maintenance costs because when one class
changes, the coupled classes are more likely to require changes.

Detection: The detection of high coupling is rather subjective in that the amount of
acceptable coupling depends on the problem domain. However, a coupling metric can be
computed for each class by processing the Rose MDL file associations and counting the
number time each class name appears in the “(object Association(roles (object Role
supplier)))” fields. A simple statistical analysis can be used to indicate which classes
might be candidates for being coupled to too many others.

NewClass3

NewClass NewClass2 NewClass5

NewClass4navToClass4

navToClass4 navToClass4 navToClass4

Figure 14: UML showing NewClass4 associated with the other four classes – high
coupling.

logical_models (list unit_reference_list
 (object Class "NewClass"
 quid "47CC0AAE03D8")
 (object Class "NewClass2"
 quid "47CC0AB102EE")
 (object Class "NewClass3"
 quid "47CC21E900DA")
 (object Class "NewClass4"
 quid "47CC21EE038A")
 (object Class "NewClass5"
 quid "47CC24F702AF")
 (object Association "navToClass4"
 quid "47CC21F501B5"
 roles (list role_list
 (object Role "$UNNAMED$0"
 quid "47CC21F60109"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$1"
 quid "47CC21F6010B"
 supplier "Logical View::NewClass3" // NewClass3 associated with
 // NewClass4

 quidu "47CC21E900DA")))
 (object Association "navToClass4"
 quid "47CC24E8034B"
 roles (list role_list
 (object Role "$UNNAMED$2"
 quid "47CC24EA01C5"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$3"
 quid "47CC24EA01C7"
 supplier "Logical View::NewClass" // NewClass associated with
 // NewClass4

 quidu "47CC0AAE03D8")))
 (object Association "navToClass4"
 quid "47CC24EE0148"
 roles (list role_list
 (object Role "$UNNAMED$4"
 quid "47CC24F100CB"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$5"
 quid "47CC24F100CD"
 supplier "Logical View::NewClass2" // NewClass2 associated with
 // NewClass4

 quidu "47CC0AB102EE")))
 (object Association "navToClass4"
 quid "47CC24FE02AF"
 roles (list role_list
 (object Role "$UNNAMED$6"
 quid "47CC2500000F"
 supplier "Logical View::NewClass4"
 quidu "47CC21EE038A"
 is_navigable TRUE)
 (object Role "$UNNAMED$7"
 quid "47CC25000011"
 supplier "Logical View::NewClass5" // NewClass5 associated with
 // NewClass4
 quidu "47CC24F702AF"))))

Figure 15: Rose MDL file showing NewClass4 associated with the four other classes.

5 Interaction and State Model Defects
This section discusses the most significant defect in dynamic diagrams: failing to be
consistent with static diagrams. Identifying additional issues is left as future work.

5.1 Message Arcs and Class/Objects that do not Correspond to the Class
Model

Description: In a project, all of the object-oriented models model the same domain
objects and such should be based on the same model components. Many students fail to
make this connection. As a result, they build each model from scratch and ignore the
work already done in previous modeling. Frequently, students will have wonderfully
refined class models and then use different identifiers for classes, attributes and
operations when producing interaction and state models. On the other hand, Rose and
many other design tools provide mechanisms for ensuring consistency between diagram
types. In Rose, drop-down menus give appropriate suggestions based on components
from the class model – all a developer needs to do is click on the appropriate identifier.
Students need encouragement to use such assistance.

Detection: The detection of this defect can be achieved by scanning the interaction and
state model parts of the Rose MDL file to determine if all components are already part of
the class model.

6 Conclusion
We have identified a number of frequent errors made by students when constructing
UML diagrams. This list is certainly not intended to be exhaustive, but in our experience
these defects have the distinction of being both easily recognized (at least by instructors)
and very common. Future plans include developing tools to automatically recognize
many of these defects. The intent is that students would use the tools to get anytime
feedback on their models, presumably resulting in improved submissions. Thus the goal
is an automated assistant: developing a system to identify relatively simple errors. This
will hopefully allow instructors to spend more time on more significant issues.

References

[1] Cleidson, R. B., et al., Using Critiquing Systems for Inconsistency Detection

in Software Engineering Models. SEKE 2003, pp. 196-203.

[2] Coelho, W. and Murphy, G., ClassCompass: A Software Design Mentoring
System. ACM Journal on Educational Resources in Computing, Vol. 7, No. 1,
Article 2, March 2007.

[3] Egyed, A., UML Analyzer Tool. Information available at http://www.alexander-

egyed.com/tools/uml_analyzer_tool.html. Accessed March 7, 2008.

[4] Gamma, Helm, Johnson, and Vlissedes, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[5] Holland, S., Griffiths, R., and Woodman, M., Avoiding Object Misconceptions.
SIGCSE Bull. 29, 1 (Mar. 1997), pp. 131-134.

[6] IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications,
http://standards.ieee.org/reading/ieee/std_public/description/se/830-
1998_desc.html, IEEE, 1998.

[7] Kaneiwa, K., and Satoh, K., Consistency Checking Algorithms for Restricted

UML Class Diagrams. In Proceedings of the Fourth International Symposium on
Foundations of Information and Knowledge Systems (FoIKS 2006), Lecture
Notes in Computer Science, Volume 3861, Springer-Verlag, 2006, pp. 219-239.

[8] Konrad, S. and Cheng, B.H.C., Automated Analysis of Natural Language

Properties for UML Models. Lecture Notes in Computer Science, Volume 3844,
Springer-Verlag, 2006, pp. 48-57.

[9] Lange, C., Improving the Quality of UML Models in Practice. In Proceedings of

the 28th international Conference on Software Engineering (Shanghai, China,
May 20 - 28, 2006). ICSE '06. ACM, New York, NY, 993-996.

[10] Lindland, O., Sindre, G., Understanding Quality in Conceptual Modeling. IEEE

Software, March 1994, pp. 42-49.

[11] Pap, Zs., Majzik, I., Pataricza, A., and Szegi, A., Completeness and Consistency
Analysis of UML Statechart Specifications. In Proc. IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop (DDECS'2001), Győr,
Hungary, 18-20 April, 2001, pp. 83-90.

[12] Pilskalns, O., and Andrews, A., Rigorous Testing by Merging Structural and

Behavioral UML Representations. In 6th International Conference on the Unified
Modeling Language (UML 2003), San Francisco, USA, October 20-24, 2003.

[13] Thomasson, B., Ratcliffe, M., and Thomas, L., Identifying Novice Difficulties in

Object Oriented Design. ITiCSE’06, June 26-28, 2006, Bologna, Italy, pp. 28-32.

[14] Sanders, K., and Thomas, L., Checklists for Grading Object-Oriented CS1
Programs: concepts and misconceptions. ITiCSE ’07, June 23-27, 2007, Dundee,
Scotland, pp. 166-170.

	1 Introduction
	2 Related Work
	3 Use Case Model Defects
	3.1 Use Case Titles That Are Not Verb Phrases
	3.2 Misuse of Extends and Includes
	3.3 Insignificant Use Cases

	4 Class Model Defects
	4.1 Non-noun Class Names
	4.2 Reversed Multiplicities
	4.3 Only Public Operations and Attributes in Implementation-level Models
	4.4 Classes, Operations, and Attributes without Documentation
	4.5 Associations without Navigation Attributes
	4.6 Attributes and Operations that are not Typed
	4.7 Illegal Identifiers for Target Language
	4.8 Inheritance Arrows in the Wrong Direction
	4.9 Duplicate Operations in Multiple Classes
	/

	4.10 Classes without Attributes and/or Operations
	4.11 Classes that are not Associated with Other Classes
	4.12 Very High Class Coupling

	5 Interaction and State Model Defects
	5.1 Message Arcs and Class/Objects that do not Correspond to the Class Model

	6 Conclusion

