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A promising though radical approach to software development is to write formal speci�ca�

tions and then derive implementations by applying sequences of formal steps� This is often

known as transformational implementation� An advantage of this approach is increased consis	

tency between speci�cations and implementations� But perhaps a more important advantage

is the potential for maintaining speci�cations rather than implementations� Because deriva	

tion sequences formally describe how implementations are constructed� the user can modify

speci�cations and then replay the derivations to obtain new implementations�

This thesis discusses replaying derivations in an interactive environment� We identify several

problems which need to be addressed to make replay both autonomous and robust� We present

our implemented replay system� ReFocus� and describe how it addresses these problems� In

particular� we present methods for updating derivations to match new speci�cations and for

verifying the acceptability of implementations produced by replay�

Updating derivations represents the technical core of this thesis� The system constructs ana	

logical maps between speci�cations and applies them to derivations to solve new problems� Tra	

ditionally� analogical maps are constructed using �rst�order generalization� or anti�uni�cation�

However� we show that �rst	order generalization is too in�exible for program derivations� In

its place� we propose using second�order generalization� We give a de�nition of second	order

generalization� identify classes of terms for which such generalizations exist� and show that it

is computable� We then identify an important subset of generalizations and give �under as	

sumptions
 a quadratic	time algorithm for computing this subset� Finally� we show that these

generalizations provide the necessary �exibility for replay�

We give a number of examples illustrating the usefulness of replay on small to medium	sized

problems� For each� we show that ReFocus is able to obtain useful results� This demonstrates

that replaying program derivations is both feasible and useful�

iii



To my wife� Jill� and my parents� Nancy and William�

iv



Acknowledgements

First� I wish to thank my advisor� Uday Reddy� for his considerable help while working on

this thesis� including suggesting interesting research directions� helping improve my technical

writing skills� and teaching me much about research� I also wish to thank the members of my

committee for their help in a number of places� John Gray� for discussing some of the theoretical

foundations of generalization� Mehdi Harandi� for suggesting replay issues to consider� and Sam

Kamin and Nachum Dershowitz� for suggesting signi�cant improvements to the presentation�

I also wish to thank my fellow students for providing friendship and support over the years�

In particular� I wish to thank Francois Bronsard� Bill Harrison� and T� K� Lakshman for review	

ing early drafts of this work and making helpful suggestions� I also thank Francois for patiently

explaining many formal aspects of program derivation� and Bill for drawing my attention to

a number of interesting replay examples� Without their help and encouragement� this thesis

would have taken signi�cantly longer to complete�

Finally� I wish to thank my family� my parents Nancy and Bill� for always believing in

me� my brother Kevin� for having con�dence that I would �nish� my cat Hazel� for providing

much	needed entertainment in the �nal stages� and most of all� my wife Jill� who has endured

more than I dared ask in helping me to complete this work� Without their love and support� I

would never have �nished�

This research was supported in part by a grant from the Motorola Corporation� I am

thankful for their support�

v



Table of Contents

Chapter

� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� The Transformational Implementation Paradigm � � � � � � � � � � � � � � � � � � �
��� Change Propagation by Replay � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��� Reuse and Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

��� Thesis Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��
 Contributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Replay Design Issues � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Representing Designs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Propagating Di�erences � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Checking Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Handling Failure � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��
 Previous Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Focus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Focus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Replay in Focus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� A Replay Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


����� Grain Size and Replayability � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Analogy and Replay � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Di�erences in Speci�cations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Propagating Modi�cations � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Derivation	by	Analogy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Determining the Replay Mode � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Syntactic vs� Semantic Analogies � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Replay Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� Analogy in ReFocus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��
 Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Analogy by Second�Order Generalization � � � � � � � � � � � � � � � � � � � � � ��


�� Generalization and Analogy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Second	Order Generalization with Combinators � � � � � � � � � � � � � � � ��

���� Related Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

vi




���� Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Maximally Speci�c Second	Order Generalizations � � � � � � � � � � � � � � � � � � ��

�� Generalization of Monadic Combinator Terms � � � � � � � � � � � � � � � � � � � � 
�


���� Matching � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

���� Generalization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 



���� Restricting MSG � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

���� Computing MSC � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�


�� Generalization of Combinators for Product Types � � � � � � � � � � � � � � � � � � ��

���� Matching � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


���� Generalization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



�
 Generalization with Relevant Combinator Terms � � � � � � � � � � � � � � � � � � ��

�
�� Matching � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
�� Generalization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Applying Second	Order Generalization to Replay � � � � � � � � � � � � � � � � � � ��

�� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 The Practical Construction of Second�order Generalizations � � � � � � � � � 
�
��� Computing Transforms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Limiting Generalizations by Maximizing Term Sizes � � � � � � � � � � � � ��
����� Computing Maximally Large Generalizations � � � � � � � � � � � � � � � � ��
����� Computing Sets of Transforms � � � � � � � � � � � � � � � � � � � � � � � � �


��� Heuristics for Improving Transforms � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Using Historical and User	supplied Information � � � � � � � � � � � � � � � ��
����� Representing Terms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� Incorporating Context � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Computing Transforms from Instance Terms � � � � � � � � � � � � � � � � ���

��� Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Acceptance Testing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Ordering Terms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Precedence Violations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Using Violations in Replay � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���


 ReFocus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� An Overview of ReFocus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Examples from Preceding Chapters � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Flattening Trees � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����� Sorted Lists � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
����� From Computing Exponentials to Joining Lists � � � � � � � � � � � � � � � ���
����� From Reversing Lists to Computing Exponentials � � � � � � � � � � � � � � �
�

��� Illustrations of ReFocus�s Strengths and Weaknesses � � � � � � � � � � � � � � � � �
�
����� From Reversing a List to Computing Factorials � � � � � � � � � � � � � � � �
�
����� Examples Illustrating Large	Grained Operators � � � � � � � � � � � � � � � �
�

��
 Moderately	sized Examples � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

vii



��
�� Circuit Veri�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
��
�� Breaking a Document into Words � � � � � � � � � � � � � � � � � � � � � � � ���

��� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Conclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

��� Contributions to Uni�cation Theory � � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Contributions to Analogical Reasoning � � � � � � � � � � � � � � � � � � � � � � � � ���
��� Contributions to Formal Program Development � � � � � � � � � � � � � � � � � � � ���
��� Future Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Appendix

A Generalization of Cartesian Combinator Terms � � � � � � � � � � � � � � � � � ���

B Results for Relevant Combinator Terms � � � � � � � � � � � � � � � � � � � � � � ���
B�� Matching Relevant Combinator Terms � � � � � � � � � � � � � � � � � � � � � � � � ��


B���� Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B�� Existence of Generalizations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
B�� Correctness of Algorithm 
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C Categorical Foundations of Uni
cation and Generalization � � � � � � � � � � ���

Bibliography � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Vita � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


viii



Chapter �

Introduction

The usefulness of automating the software development process has not always been generally

recognized� In the early years of computing� Don Gillies was given the job of implementing some

algorithms on John von Neumann�s machine� To help� Gillies wrote what would be considered

today to be a primitive assembler� Von Neumann did not approve� claiming that �it is a waste

of a valuable scienti�c computing instrument to use it to do such clerical work� �Jon���� Today�

however� hardware is much cheaper� especially relative to the costs of producing software� so

the usefulness of automating more of the software development process is much clearer� A

popular�and worthwhile�approach is to provide more tools within the current paradigm�

But the amount of automation which can be supported by the current paradigm appears to

be limited� We believe that to bene�t fully from automation� a new software development

paradigm is needed�

The paradigm advocated in this thesis is based on specifying a system formally and using

formal methods to derive an implementation from the speci�cation� This radical approach

to software development� suggested by many but perhaps best described in �BCG��� SS����

allows increased automation in many ways� One of the more important of these is in system

maintenance� System maintenance is one of the most expensive phases of any large project� so

increasing the amount of automated support for maintenance should have a large payo�� In

this new paradigm� instead of modifying the implementation directly� the user can modify the

speci�cation and reimplement it by replaying the derivation�

Replaying program derivations raises a number of issues� This thesis addresses three of

the more important ones� First� what characteristics improve the replayability of derivations�

Second� how to know when replay has been successful� Third� how to update a derivation so

that it applies to a new or modi�ed problem� To address this last problem� we present a general

de�nition of analogy based on higher	order generalization and show how to use such analogies

in replay�

�



��� The Transformational Implementation Paradigm

As in �BCG���� we believe the current software development paradigm �typi�ed by the waterfall

model
 has a number of problems� One problem is that the paradigm relies on using informal

methods to convert �usually informal
 speci�cations to code� This makes it di�cult to verify

that the two are consistent� A common� partial solution is to formalize the speci�cation by

building a prototype� But the primary purpose of a prototype is to communicate with the

customer� the �nal implementation usually has little relationship to it except for satisfying

similar requirements�� Another problem with the paradigm is that the design documentation

is incomplete� It does not record all of the decisions made by the developer� only those which

the developer �nds �interesting�� There is no assurance that this information will be useful to

the next person to work on the system�

However� the most important problem with the current paradigm is that maintenance is

done on the product of the process� the implementation� rather than its source� the speci�ca	

tion� That is� the primary result of maintenance is a change in code� Implementation distributes

information by replacing relatively simple abstractions by complex data representations� algo	

rithms� and interactions� The complex interactions are often not well understood� so making

changes to one part of a program can easily introduce errors in other parts� Thus maintaining

the implementation means that maintenance is directed at the part of the system that is hardest

to understand�

Another drawback of maintaining implementations is that it makes the other problems in the

paradigm more acute� There is no formal link between the speci�cation and implementation�

so the methodology relies on the maintainer to update the speci�cation to match the new

implementation� Even if the maintainer understands the speci�cation well enough to update

it correctly� updates may not be made due to pressure to move on to the next job� Likewise�

maintaining the prototype along with the implementation is expensive� so the prototype is

usually discarded after the initial development� Finally� changes weaken the structure of the

system� This makes it harder to verify the correctness of the new system and harder to make

changes in the future�

To address these problems� a number of researchers� including �BGW��� BCG��� Dar���

Fea��� Knu��� Red��a� SS��� Wil���� suggest using semi	automated tools to convert formal

speci�cations into implementations� This paradigm� called both transformational implementa�

tion and transformational derivation� relies on equivalence	preserving rules to provide a formal

link between the speci�cation and implementation� The user starts from a formal� executable

speci�cation and then chooses an appropriate sequence of steps to transform the speci�cation

�Unless the prototype becomes the �nal implementation�
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into an e�cient program� We call this sequence of steps a derivation� Because each step

preserves equivalence� the program and its correctness proof are developed simultaneously�

This paradigm has the potential to improve the development process in a number of ways�

The relationship between speci�cations and implementations is formalized� so the number of

clerical errors is reduced� The paradigm supports proving properties about the speci�cation and

its implementation� this can increase the user�s con�dence in the resulting program� Finally�

this paradigm allows maintenance to be done on speci�cations� The sequence of steps from

speci�cations to implementations is completely described� so it can be a guide for propagating

changes from the �rst to the second�

This method is an improvement because it would appear that speci�cations are easier to

maintain� they do not need to be e�cient and so can be written for clarity� Modifying spec	

i�cations is not trivial� but at least the information is usually more localized and explicit� A

second bene�t of maintaining speci�cations is that since the speci�cation is executable� it serves

as a prototype which remains consistent with the implemented system and can provide a con	

venient basis for testing proposed changes� But the most important bene�t is that fewer bugs

are likely to be introduced �or reintroduced
 during maintenance� If a change makes a previ	

ous optimization impossible� the system can detect the inconsistency and warn the developer

of the problem� Since maintenance is usually the costliest part of a project� improving the

support for maintenance may prove to be the most important bene�t of the transformational

implementation paradigm�

��� Change Propagation by Replay

There are a number of signi�cant practical and theoretical issues in applying formal methods

develop programs� Theoretical issues include what sort of consistency claims can be made

for mechanical proofs� in mathematics� proofs are accepted only after being examined by the

community� It seems that the social process plays an important role in verifying a result

�DMLP���� Even if a proof system correctly implements an accepted methodology� random

hardware errors may cause the system to generate incorrect proofs during any particular run�

�SS��� argues that in spite of these issues� useful transformation systems can be built and relied

upon in the same way that we rely on compilers to translate high	level languages into machine

code� Practical issues include the di�culty of writing formal speci�cations and the di�culty of

constructing derivations and proofs� Progress has been made on applying formal methods to

medium	scale systems� but as illustrated in �Coh���� it is still very time	consuming to obtain

useful results� In any case� it is impossible to mechanically validate very large� production	

quality systems�
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This thesis addresses a practical issue� how to propagate changes from speci�cations to

implementations� It is very likely that proving large systems meet their speci�cations will always

be expensive� But if formal methods make it easier to maintain them� then it may be possible

to recover the initial expense during the later phases of a project� Thus a demonstration of

the feasibility of automatically propagating changes helps motivate research in applying formal

methods to large systems�

One way to propagate changes is to build a set of transforms which modify the speci�cation

and implementation simultaneously� However� this method has the same problem as informal

methods� it is di�cult to ensure that the changes preserve consistency� A re�nement is to

compare the original and new speci�cations� transform the program accordingly� and then use

a theorem prover to either show the new program is correct or to make the appropriate �xes�

But a limitation of this method is that for large problems� it is di�cult to construct a correct

program matching the speci�cation�

The transformational implementation paradigm suggests an alternative method� As sug	

gested in �BCG��� Dar��� Fic�
� Red��a� SS��� Wil���� the system can record the steps used

to derive the implementations and reexecute� or replay them� after modifying speci�cations�

This shifts the burden of maintaining consistency to the underlying transformational system�

Another advantage is that the derivation history� as part of the design documentation� is auto	

matically maintained along with the code� This improves the quality of the documentation by

insuring that the derivation describes the current implementation� Thus replay can be used to

increase the amount of automation in maintenance�

As others� we have found replay to be also useful for transferring design knowledge between

problems in di�erent domains� We call this derivation�by�analogy�� Since deriving similar

programs often involves similar steps� replaying derivations can save the user time by reusing

the process of constructing implementations� It also makes it easier to experiment with di�erent

ways of optimizing a speci�cation� potentially improving the quality of the implementation by

allowing the user to explore ideas for which there may not otherwise be time� In addition to

automating maintenance� this thesis addresses using replay for derivation	by	analogy�

Designing a useful replay mechanism poses interesting challenges because reexecuting deriva	

tions can fail for several reasons� First� replay may be unable to satisfy the preconditions of

a step� Second� it may be unable to correctly update a reference to the speci�cation that is

stored in a step� Third� even if a step is applied� it may not achieve the original purpose and

the new program may be too ine�cient� To be useful� replay must be robust � it must be able

to reexecute derivations in spite of changes in the speci�cations and supporting theory�

�As opposed to derivational analogy �Car���� which is a speci�c form of reuse as discussed in Section 	
�
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This research address two primary issues of making replay robust� First� replay must be

able to propagate di�erences between speci�cations � it must determine the changes made to a

speci�cation and apply them to the derivation so that it is specialized to the new problem�

Without this� replay is overly sensitive to changes� Secondly� replay must test for acceptability �

it must ensure that the newly derived program is as e�cient as the original� This allows the

user to concentrate on new work instead of checking and rechecking the results of replaying

derivations�

While replay must be robust� it must also be autonomous� If the user spends too much time

providing background information and making decisions� then it becomes easier to reconstruct

the derivation by hand� Thus in systems where there is no extensive domain knowledge� replay

must make a �best guess� based on domain	independent heuristics�

A major part of our solution to these problems� propagating di�erences and testing for

acceptability� is based on building an analogy between the old and new speci�cations� Since

known methods for building analogies are too in�exible or too expensive for replay� this research

gives a new de�nition of analogy based on higher	order generalization� This type of analogy

provides a basis for making decisions based solely on term structure�

While the focus of this thesis is on replaying program derivations� replay is also useful in

semi	automated theorem proving� The basic problem in both program derivation and theorem

proving is the same� the need to control search� In both� either the system or the user must

decide what steps to apply and how to apply them� In both� replay can be used to capture in	

formation about search control and apply it to new problems� The di�erence is in the product�

In theorem proving� the goal is exhibit a proof� The only constraint on the proof is that all

inferences are valid� In program derivation� the goal is to exhibit a program satisfying perfor	

mance requirements� Thus program derivation is constrained by what sort of program can be

produced� This makes program derivation� and replaying program derivations� a harder prob	

lem� However� since program derivation is a form of theorem proving� much of the discussion

of replay in this thesis also applies to theorem proving� We use the term �proof development�

to refer to both theorem proving and program derivation�

��� Reuse and Related Work

Replaying proof developments is a speci�c form of reuse� Given a problem and its solution�

the intuition is that the solution should be reusable when confronted with a new� but similar

problem� Reuse can take many forms�

� reusing components when problems are identical�

� reusing solutions when problems are equivalent�






� reusing solutions when problems are analogous� and

� reusing the process of constructing solutions�

Reusing components is the goal of much research on programming languages� For instance�

object	oriented programming supports reuse by identifying building blocks that can be lifted

from one problem and incorporated into others �GR��� Str���� Another area of research� para	

metric polymorphism� supports reuse by abstracting common procedures so they can be applied

to di�erent sorts of objects �Mil��� CW�
�� In general� research into creating reusable compo	

nents focuses on introducing more abstraction into implementations to improve reusability and

maintainability� The limitation of reusing components is that the user is usually responsible

for ensuring that the components work correctly in the new problem�

Reusing solutions when problems are equivalent characterizes much work in theoretical

computer science� Once a solution to a problem is found� that solution can be reused in new

domains by identifying similarities between problems� For instance� solutions to the problem

of graph coloring can be applied to allocating registers in compilers �cf� �ASU���
� Where an

extensive analysis of a problem is available� this sort of reuse is very important and useful�

However� it is not always easy to �nd similarities between problems� and only problems with

very well	de�ned solutions can be solved in this way�

Reusing solutions on analogous problems characterizes much of the research on machine

learning �cf� �MCM��� MCM���
� Carbonell �Car��� describes transforming solutions to im	

prove problem	solving� Carbonell identi�es a set of operators which can be used to transform

previously	obtained solutions to solve portions of new problems� Dershowitz and Manna �DM���

apply similar techniques to programming� Given a program� its speci�cation� and a modi�ed

speci�cation� the system computes transformations between the speci�ciations and applies them

to the program to obtain a new version� A di�culty with this is that the system must then prove

that the resulting program meets the speci�cation� A related di�culty is that sophisticated

reasoning is needed to ensure the new program is executable� For instance� transforming a pro	

gram to compute square roots into one which �nds the position of an element in a sorted array

leads to the test �pos�A� b
 � z � y� where pos�A� b
 denotes the position of b in A� Since pos it

the value being computed� the test is not executable� it must be rewritten to �b � A�z � y��� In

general� the system must have an extensive set of rules to ensure that the transformed programs

are executable� It is not clear that such an approach scales up to large problems�

Reusing the process of constructing solutions characterizes the sorts of systems this research

is concerned with� Given a sequence of steps used to solve a problem� a system can reapply the

steps to new problems to obtain new solutions� In some cases� the steps are blindly repeated

until they fail� In other cases� the system modi�es and reorganizes the sequence of steps to

specialize it to the new problem� But in any case� a system examines the inferences used in one
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problem and applies them to other problems� As a result� the system can rely on the underlying

theorem prover to maintain correctness� so it should be easier to scale it up to large problems�

Systems which reuse processes can be categorized by their �exibility� At one extreme are

the systems based on learning macro�operators � that is� operators which combine the e�ects

of primitive operators �DM��� FHN��� LRN��� MKKC���� For instance� in explanation	based

learning �DM��� MKKC���� the system constructs a proof for a speci�c example and then

replaces the constants in the proofs by variables to obtain a maximally general rule� This allows

the system to reuse the proof on similar problems� avoiding search� �HA��� MMS�
� apply this

method to circuit design� while �FH��� KW��� apply it to theorem proving� However� such

rules can be applied only when a speci�c set of preconditions are satis�ed� If any one of the

preconditions is violated� such rules provide no guidance on how to proceed�

A more �exible approach is to reuse proof outlines � that is� to replay them� In this approach�

the system stores key steps in developing proofs and replays them to create new proofs� One of

the earliest systems to do this was �Wil���� Reusing proof outlines is more �exible than reusing

entire proofs because the general steps of a proof may apply where speci�c rules do not� This

allows more di�erences between old and new problems� It also allows reusing portions of proofs

by replaying subsequences of steps from outlines�

More �exible yet is derivational analogy �Car��� Vel���� In this approach� all information

related to proof development is stored and made available for reuse� This includes complete

sets of rules used to construct proofs� why speci�c rules were applied� and why alternative

approaches were rejected� This maximizes �exibility by providing all information that might

be useful to determine if problems are related and deciding how to recover from failures� This

method is also based on replaying steps� but replay exercises greater control on how and which

steps are applied� However� there is a lot of information to record when constructing a proof

and process during replay� Also� using such detailed information means that replay depends

strongly on the speci�cs of the underlying proof development system� This makes implementing

derivational analogy di�cult�

This thesis discusses replaying proof outlines� We show that replaying proof outlines pro	

vides adequate �exibility without requiring the extensive analysis applied in derivational anal	

ogy� The result is a mechanism for reusing proofs which is reasonably easy to implement�

e�cient� and useful�

While the usefulness of replaying proof outlines has been discussed for some time� imple	

mentations have appeared only recently� These can be classi�ed by how search is controlled

during proof development� In many cases� the underlying proof development system is fully

automated � that is� it uses domain	speci�c knowledge and general strategies to control search

to minimize the amount of input from the user� This characterizes many theorem provers from

the ���s and early ���s �Lin���� In automated systems� replay is useful for speedup� solutions
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can be obtained without replay� but replay simpli�es search by allowing the system to reuse

previous work� Such systems include LP �Sil��� which uses replay to help solve for unknowns

in symbolic algebra� and APU �Bha��� and DMS �Bax��� Bax��� which incorporate replay into

automated programming�

In contrast� many recent systems are interactive� These contain little search	control knowl	

edge and rely on the user to develop proofs� such as �Con��� Gor��� Pau��� Red��a�� In these

systems� replay is used to increase automation� That is� replay simpli�es proof development for

the user by providing problem	speci�c search control� Interactive systems incorporating replay

include POPART �Wil���� XANA �MF���� and �Gol���� These systems apply replay to con	

structing programs� Closely related to these are Redesign �SM�
� and BOGART �MB��� Ste���

which apply replay to designing circuits�

The system described in this thesis is based on replaying proof outlines in an interactive

environment� Our work di�ers from previous work in that it is a complete implementation

of a general� robust replay system� In contrast� POPART does not address robustness� The

user is responsible for constructing robust scripts� Redesign and BOGART address robustness

partially� but remain sensitive to relatively small changes in speci�cations�� XANA applies

replay to a limited domain� implementing generate	and	test algorithms� This allows replay to

be specialized for particular types of problems� �Gol��� applies replay to general	purpose pro	

gramming� but while it presents methods for improving robustness� the actual implementation

did not include those methods� Thus the replay system described in this thesis represents one of

the �rst implementations to address robustness while supporting a wide range of programming

problems�

��� Thesis Overview

This thesis can be divided into four major parts� The �rst part� Chapters � and �� discusses

the design of a robust replay mechanism� This represents our experience in integrating replay

into the Focus transformational implementation system �Red��a� Red��a�� Chapter � describes

the design issues and how they have been resolved in previous work� Chapter � makes these

issues concrete by discussing Focus and its associated replay system� ReFocus�

The second part� Chapters �� 
� and �� addresses the most di�cult� and important� part

of replay� how to modify derivation histories so that reexecuting them does not fail� Our

solution is based on higher	order generalization� While �rst	order generalization and higher	

order uni�cation have been well	understood for a number of years� higher	order generalization

has not been studied extensively� We present a de�nition for the second	order case and show

�See �Mos��� for an analysis for all three of these systems
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that it is computable� This leads to a general de�nition of syntactic analogy which is useful

in domains with rich term structure� Chapter � discusses the factors which in�uence how

analogies should be constructed in replay� Chapter 
 de�nes second	order generalization� gives

an algorithm to compute it� and describes how it can be used to build syntactic analogies�

This de�nition of second	order generalization the core contribution of this research� Chapter �

considers the practical issues of integrating second	order generalization into a replay system�

It identi�es a useful subset of the generalizations� gives an e�cient algorithm for computing

them� and illustrates their use in ReFocus�

The third part� Chapter �� proposes a solution to the problem of deciding if replay is

successful� This technique is based on a novel application of term orderings� It explains how

term orderings can be used to obtain a discriminating test for deciding if the results of replay

meet the user�s goals�

The �nal part� Chapter �� brie�y describes our implementation of replay� ReFocus� and

gives examples of applying ReFocus on a number of problems� These include both examples for

which replay is successful and examples for which it is not� This helps establish the capabilities

and limitations of ReFocus� Chapter � concludes with a discussion of the usefulness of replay

in proof development systems�

��� Contributions

This thesis contributes to the �eld of software engineering and arti�cial intelligence in the

following ways�

� It demonstrates the feasibility� within limits� of using the transformational implementation

paradigm for program maintenance�

� It demonstrates that an extensive� domain	speci�c knowledge base is not necessary to

build a useful replay mechanism�

� It de�nes second	order generalization and gives an e�cient algorithm for computing an

important class of generalizations�

� It uses second	order generalization to give a de�nition of analogy based on the structures

of terms�

� It applies second	order analogies to replay�

� It describes an acceptability criterion that is useful for replaying program derivations�
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The core contributions are the �rst and third items� We demonstrate that a robust replay

system can be built� This con�rms the claims of a number of researchers� We also de�ne

second	order generalization� This gives us a tool that has many potential uses beyond replay�
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Chapter �

Replay Design Issues

In the transformational implementation paradigm� the user �i�e� the system developer
 writes

a high	level speci�cation and derives an e�cient program� When the speci�cation is changed�

the modi�cations can be propagated to the program by using replay to reexecute each step in

the derivation history� Several problems can arise when reexecuting a step�

� It may fail because replay is not able to �nd the part of the new speci�cation corresponding

to a subterm stored with the step�

� It may fail because one of the step�s preconditions is not satis�ed�

� It may appear to succeed but not produce acceptable results�

A replay system must address all of these problems�

The primary design issue for a replay system is that it must do as much as possible with as

little involvement from the user as possible� Replay must be robust � in spite of changes to the

speci�cation� replay should repeat as much of the derivation as possible� If replay fails too often�

the user spends too much time repairing derivations� Replay should also be autonomous� it

should not require auxiliary information from the user� Otherwise the user may �nd it simpler�

and perhaps even faster� to reconstruct the derivation manually�

This chapter elaborates on these issues and discusses general approaches to making replay

robust and autonomous� In particular� it looks at recording derivation histories� propagating

di�erences� checking results� and handling failure� In each case� we discuss general ways to

improve support for maintenance as well as how previous systems have approached the prob	

lems� Although our focus is on software development� the following discussion also draws from

existing replay systems in component design and theorem proving since they must solve similar

problems� The speci�cs of our solutions are postponed to Chapter �� which presents the Focus

transformational implementation system and describes how replay interacts with it�
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��� Representing Designs

In transformational systems� the design is represented by the derivation history� Each step

in the history indicates what decisions were made in implementing the system� For instance�

a step might introduce a function which combines the results of two other functions to avoid

generating an intermediate result� How well the derivation history captures the design decisions

a�ects both how easily it can be replayed and how useful it is as documentation�

An important issue in derivation histories is the grain�size� or generality� of the recorded

steps� A step is small�grained if it refers to the particular rules to be applied or contains

detailed descriptions of where to apply them� Steps which do not store these sorts of details

are large�grained� For example� �Unfold reduce��MAX� �
 using rewrite rule REDUCTION	

OP	TO	FOR	LOOP� �Gol��� p� ���� is small	grained while �achieve recursion� and �simplify�

are large	grained�

In replay� there is a con�ict between providing guidance and being overly sensitive to

changes� Recording small	grained steps usually makes replay more e�cient because fewer alter	

natives need to be considered� However� it also makes replay more brittle� small changes in the

rules or speci�cations can invalidate entire sequences of steps� On the other hand� recording

large	grained steps means that replay is robust at the expense of recomputing results which

may already be available� Thus there is a trade	o� between e�ciency and autonomy� stor	

ing large	grained steps makes replay less e�cient but also decreases the chance that the user

must repair the derivation by hand� Since our goal is to increase the amount of automation�

minimizing the amount of work on the part of the user is the more important issue�

Most implemented replay systems� such as �MB��� MF��� SM�
� Wil���� store small	grained

steps� In many cases� this is appropriate since rule	based systems use replay for e�ciency

rather than to increase automation� However� there has been some discussion of storing large	

grained steps� In particular� Balzer �Bal�
� and Fickas �Fic�
� discuss improving replay in the

transformational system PADDLE by storing more general steps with an emphasis on recording

the goals achieved by each step� Also� Silver �Sil��� discusses storing large	grained operators�

such as �isolate�� �collect�� and �factor�� in his equation	solving system LP� The reports on

both LP and PADDLE suggest that replay can be made more robust by storing large	grained

steps� This is also the approach taken in Focus�

In contrast� HOL �Gor��� stores very small	grained operators� As an example� the proof

history in HOL� for

� l� � list��
� l� � list��
� LENGTH�APPEND l� l�
 � �LENGTH l�
 � �LENGTH l�
�

�As given in the HOL�� standard distribution
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GEN�TAC

THEN GEN�TAC

THEN INDUCT�TAC

THEN ASM�REWRITE�TAC�MULT�CLAUSES�ADD�CLAUSES�SYM�SPEC�ALL ADD�ASSOC��

THEN REWRITE�TAC�SPECL��m	num����p
n��n��ADD�SYM�SYM�SPEC�ALL ADD�ASSOC��

THEN SUBST�TAC�SPEC�ALL ADD�SYM�

THEN REWRITE�TAC����

Figure ���� HOL proof that  distributes over ��

is

LIST�INDUCT�TAC THEN ASM�REWRITE�TAC �LENGTH�APPEND�ADD�CLAUSES���

The �rst step� LIST INDUCT TAC� invokes induction to obtain cases for l� � NIL and l� �

CONS h t� The second step� ASM REWRITE TAC� rewrites both cases by applying the inductive

hypothesis� the de�nitions of LENGTH and APPEND� and various theorems of addition� These

steps are very �ne	grained� all of the names refer to speci�c rules and tactics in the database�

Were the user to rename �say
 LIST INDUCT TAC to INDUCTION OVER LISTS� replay would need

to redetermine which rules to apply in a new proof�

Even more signi�cantly� proofs at this level of detail rarely share a common structure�

Consider the corresponding theorem for the distributivity of multiplication over addition�

�mnp�p � �m� n
 � �p �m
 � �p � n


Since these two theorems are similar� one would expect their proofs to be similar� However�

the HOL proof� given in Figure ���� is very di�erent� Even without a detailed explanation of

this proof� it is obviously very di�erent from the proof for LENGTH�APPEND l� l�
� Research has

demonstrated that HOL is a very capable theorem prover �Gor���� but incorporating replay

into HOL would be di�cult�

��� Propagating Di�erences

Propagating di�erences� from speci�cations to implementations is an integral part of the trans	

formational implementation model� In many cases� the di�erences are automatically propagated

by the rules� For instance� the rule �A�A rewrites toA� applied to �F�x
 �� G�x
�F�x
 �� G�x
�

�The term 
propagating di�erences� is used to refer to updating a derivation to apply it to a new problem
 This
is in contrast to the term 
propagating changes� which refers to using replay to change an implementation after
making changes to its speci�cation
 Di�erence propagation arises in both change propagation and derivation�
by�analogy
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would automatically propagate any modi�cation made to the subterm F�x
 �� G�x
� In other

cases� however� replay must propagate di�erences explicitly� For example� the de�nition of an

auxiliary function may need to be changed to re�ect renamed functions� Replay may also need

to change which rule is applied by a step �perhaps because the original rule is no longer avail	

able
� though doing so is di�cult since it requires understanding why speci�c rules were used�

Also� if replay compares the new results against the original results� the original results may

need to be updated to correspond to expected di�erences� This list is certainly not complete�

the need to propagate di�erences is pervasive in replay�

When modi�cations are very extensive� propagating di�erences is as di�cult as building

new derivations� Since propagating di�erences re�ects the need to predict results without the

bene�t of actually deriving them� minimizing the number and size of references stored in the

derivation history improves robustness� This is another reason to store large	grained steps�

A number of systems provide some type of di�erence propagation� This is partly because

most reported systems store small	grained steps in histories� if any references to the speci�cation

stored with the steps are not changed� then reexecuting them is likely to fail� Thus these systems

depend strongly upon explicit di�erence propagation� One system to do sophisticated di�erence

propagation is XANA �MF���� XANA is the replay component of DIOGENES� a system for

specializing generate	and	test algorithms� XANA forms correspondences between old and new

objects by identifying how they were created� Suppose step S� in a derivation creates an

object used by step S�� To �nd the corresponding object while replaying step S�� the system

determines which object was created when step S� was replayed� This is useful when the source

of an object is clearly identi�able� but accurate identi�cation is not always possible� When the

interactions between the rules become more complex� tracing the source of each object becomes

much more di�cult�

Goldberg �Gol��� describes providing di�erence propagation in the transformational imple	

mentation system KIDS� KIDS modi�es programs by applying a series of tactics� Tactics are

rules for doing such operations as combining loops or simplifying expressions� Each tactic is of

the form

tactic�name �parameter�list
 �
let identi�er�list in tactic returns identi�er�list�

During replay� the system maintains a list of parameter correspondences which contains the

original and new values for each parameter referenced in a tactic� If the value of a parameter is

not given by a previous step �perhaps because it was speci�ed by the user during the original

derivation
� replay checks the parameter correspondence list� If the parameter is not in the

list� the system searches upwards in the new abstract syntax tree for a node which contains

a parameter which is in the list� and then traverses back down the original abstract syntax
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tree to locate the matching subterm� Goldberg suggests that this method has the potential

to be successful because �components are recursively divided into subcomponents� and this

parts hierarchy can be used to �nd corresponding components�� However� as in XANA� these

heuristics are applicable only to the extent that systems can be divided into discrete components�

While some systems permit division� our experiences have shown that some programs can

be synthesized only by manipulating interacting components� The parameter correspondence

heuristic had not been implemented at the time �Gol��� was written� so there is no discussion

of its usefulness in practice�

Our solution is based on building analogies via higher	order generalization� This is described

in Chapters �� 
� and ��

��� Checking Results

In transformational implementation systems� there are three types of failures to contend with�

� the resulting program is not correct�

� some step in the derivation cannot be replayed� or

� the resulting program is not e�cient�

Correctness� or how to write code so it matches the speci�cation� is the traditional programming

issue� However� this is usually not an issue in replay� Ensuring that the �nal result is correct

is the job of the transformation implementation system� Because this type of system uses

equivalence preserving rules� the result of a derivation should always be consistent with the

speci�cation automatically� Hence there is no need for replay to check correctness�

On the other hand� replay can and must handle the second problem� failing to apply a step�

While this problem is easy to detect� deciding how to proceed is di�cult� Recovering from

failed steps is discussed in the next section�

Detecting the third problem� failing to create e�cient programs� is more di�cult� When the

user builds a derivation� the goal is to transform the ine�cient speci�cations into a program

which meets some criteria such as using a bounded amount of space� Replay fails if the results

do not meet the user�s goals� In this case� the user must repair the derivation by adding new

steps �possibly after establishing more properties about the speci�cation
�

It is important that a replay system provides automatic checks for goal failure� If it does

not� the user must either check the results by hand or blindly trust replay to produce acceptable

results� Checking results manually is tedious and error	prone because it requires examining the

logic of the program in detail� Sometimes� the di�erence between an e�cient and ine�cient

program can be as slight as transposing a pair of function names� Making the user responsible for
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�nding such failures negates much of the usefulness of replay�and possibly of transformational

implementation systems�because rechecking can be as time	consuming as using traditional

methods to make modi�cations�

Acceptability is easier to determine in systems which store small	grained steps� In these�

being able to apply a rule is usually enough to guarantee that the results will be acceptable�

and so the user needs to be warned only when a rule fails to apply� However� detecting failure

is more di�cult when applying large	grained operations such as �rewrite by all rules�� When

there is no detailed record of which rules were applied and the e�ects of each� the system

cannot recognize when an important rule has not been applied� Unfortunately� small	grained

steps make replay brittle� so storing such steps is not a good solution to the problem of checking

results�

One approach to testing acceptability is to simply compare the original and new programs�

The assumption is that any change in the �nal program may mean that it no longer meets

the user�s needs� Unfortunately� requiring exact matches wastes the user�s time on trivial

di�erences� It should be possible to be more selective about which changes are brought to the

user�s attention� An improvement on this method is to use some form of analogy to directly

revise the �nal program to re�ect the changes in the speci�cation� That is� replay could predict

the form of the derived program and compare the predicted form against the actual results�

There are di�culties with prediction� First� the available methods for �nding analogies

cannot accurately predict the form of entire programs� It is much easier to predict the form of

small terms since there are fewer details and so fewer opportunities for mistakes� Secondly� if

the modi�cations made by the user consist of removing and adding property rules �as opposed

to function de�nitions
� it is unclear that there is any better way of predicting the �nal form

than by actually applying the rules� Finally� and most importantly� expecting an exact match

against a predicted result fails to recognize the purpose of a derivation� That is� the assumption

that the user should be informed of all di�erences is false� There is no need to warn the user

of inconsequential di�erences� Ideally� replay would warn the user of potential problems only

when it cannot ensure that the goals of the derivation have been met� Generating too many

warnings is nearly as bad as not checking at all since in either case the user spends too much

time reexamining results�

The problem with detecting goal failure is in determining what the goals are� The system

could require the user to state them explicitly� but there is no adequate language for describing

most goals� While it is simple to test for some goals� such as completing a proof� it is not easy

to test for most goals� For instance� usually the goal of a derivation is to decrease the space or

time needed to compute a result� But while criteria for such goals can be stated formally� there

is no general algorithm for deciding if a program meets the criteria� For other goals� such as
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readability�� there are no known ways to quantify the criteria� One solution would be to restrict

the sorts of criteria that can be used and provide a language for describing only these� But

then the user may be interested in some unanticipated goal� For example� �Red��b� describes

a derivation which increases the parallelism of an implementation� this is not an obvious goal

of a derivation� Therefore� having the user describe the goal of a derivation is not likely to be

successful� Heuristics are needed for inferring goals automatically�

Checking goals has not been discussed extensively in the literature� One system that does

address goal checking is Silver�s LP �Sil���� Since the purpose of LP is to solve algebraic

equations� the goal is to transform equations into the form x � a where x does not appear

free in a� As with theorem proving� this provides a simple test for success� However� it is not

general enough for program transformation� The other system to address the issue is POPART

�Wil���� It has very limited goal tests� the user can write templates for comparing against the

results of key steps during replay� This is not a practical solution if the user intends to build

many derivations�

Our solution� as described in Chapter �� is to record key function calls that are removed

during derivation� This captures goals only indirectly� but it is e�ective on many examples�

Combining it with di�erence propagation makes it more e�ective because then the recorded

function names can be changed� Since there are fewer chances to be wrong when changing

small expressions� this is a signi�cant improvement on attempting to predict the form of entire

programs�

��� Handling Failure

Replay systems must recover from two types of errors� failing to apply a step and failing to derive

an acceptable implementation� Recovering from the second type is straightforward� the best

strategy is to simply ignore the problem and continue with the next step� If the transformation

system is capable of building derivations automatically� then invoking this feature to repair the

problem may be helpful� But in systems which are guided by the user� it is better to warn the

user than attempt repair so as to avoid wasting time on unpro�table search paths� Furthermore�

the user�s goals for a derivation may change or be identi�ed incorrectly� in which case there

may be no need for repair� More sophisticated sorts of error recovery require heuristics about

constructing derivations� such as those described in �Roe����

On the other hand� failing to apply a step cannot be ignored� Since each step usually

establishes the preconditions of the next� one failure is likely to cause others� Some action

should be taken to control this behavior�

�Of course� this goal is not generally useful in the transformational implementation paradigm
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A very simple system would halt on the �rst failed step� This is akin to compilers halting at

the �rst syntax error in a program� Programmers prefer compilers which recover from syntax

errors so that many can be found in a single run� Likewise� replay systems should continue

after a step fails to help locate other problems� Transformational systems are generally slow�

so it is useful to design replay so that it can run without any input from the user even when a

step fails�

Recovery after a step fails can take several forms�

� postponing a step until it becomes applicable

� skipping a step and continuing

� inserting a new step

� replacing a step with a di�erent one

Ultimately� deciding what action to take is as di�cult as building new derivations� If there

is no system for deriving programs automatically� the best choice depends upon the type of

operation that failed� For example� if a rewrite step unexpectedly generates multiple results�

replay can add a step to pick the result which is closest to the expected form� An alternative

to recovery is to simply halt� this is the most appropriate action when it becomes apparent

that the original derivation is no longer applicable� In such cases� continuing accomplishes little

more than to generate a large number of error messages� However� deciding when derivations

are not applicable is also di�cult�

Most reported systems either halt on errors or skip to the next step� LP �Sil��� is the only

system for which sophisticated failure recovery is described� It could add� substitute� or omit

steps as necessary� This is because LP is applicable to a limited domain �solving algebraic

equations
� so Silver and his coworkers were able to develop an extensive theory for solving

problems in this domain� Recovering from failed steps in transformational implementation

systems is more di�cult because the domain is essentially unconstrained�

��� Previous Work

In his extensive discussion of replay� Mostow �Mos��� identi�es several design issues in replaying

derivations�

�� Representation� How to represent the original derivation and what information should be

included�

�� Acquisition� How to capture the derivation� In some systems the user explicitly enters

it as a separate step� but in most the user�s actions are recorded automatically� Ideally�
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systems which record steps would also record the reasons why each step was chosen� but

this is an unsolved problem�

�� Retrieval � How to choose the stored derivation which is most relevant to the current

problem� This is di�cult because it requires being able to predict the e�ects of a derivation

on a new problem�

�� Correspondence� How to match elements of the original derivation to the current problem�


� Appropriateness � Deciding which steps should be used� The de�nition of �appropriate�

depends upon the capabilities of the system� in a given situation� a step may be executable

�the preconditions for the step are satis�ed
� correct �the step preserves correctness
�

successful �the step achieves its original purpose
� or desirable �the step is still better than

any of its alternatives
�

�� Adaptation� Altering the original derivation so it solves the current problem� This means

updating� replacing� or removing steps which are not applicable in the new problem�

�� Partial reuse� Using portions of the original derivation instead of the whole� This can

mean either reusing some continuous subsequence of the steps or picking out only those

individual steps which are needed�

It is instructive to examine these design issues in the context of the previous sections� In

particular� many of the issues are only relevant in rule	based systems�

�� Representation� This is partially addressed by the discussion on derivation histories where

it is argued that the representation should consist of large	grained steps� However� we

did not discuss explicitly representing the reasons a user made a particular choice� It is

not clear how to capture the reasoning without a model of the user� this implies that

capturing reasoning is more appropriate in rule	based systems�

�� Acquisition� Our approach is very similar to most other systems� the user operations are

recorded as they are invoked�

�� Retrieval � It is not clear that automated retrieval is useful in interactive systems� When

using replay to automate maintenance� the derivation is already chosen� When using

replay for derivation	by	analogy� it is not obvious which example should be applied to

the problem� Often problems and solutions with very similar structures come from very

dissimilar domains�

�� Correspondence� This issue was addressed in the section on propagating di�erences� and

seems to be a key problem in replaying derivations in interactive systems�
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� Appropriateness � In interactive systems� there is no list of alternative actions� so it is

useful to simply replay each step and attempt to recover from failure rather than try

to predict whether an operation will be successful� However� determining if a step is

successful is important to interactive systems�

�� Adaptation� This is also a feature of rule	based systems� though replay may be able to

recover from failed steps by adding or changing steps reactively�

�� Partial reuse� In an interactive system� partial reuse is limited to replaying subsequences

of derivations� More sophisticated partial reuse� such as selecting individual steps to

replay in arbitrary order� requires rule	based reasoning�

Thus in interactive systems� the important issues are representation� correspondence� and ap	

propriateness� where appropriateness is understood to be in the sense of determining if a step

was successful� The remainder of this thesis addresses these issues for semi	automated proof

development systems and for Focus in particular�
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Chapter �

Focus

Focus is a transformational implementation system based on the fold�unfold methodology of

Burstall and Darlington �BD���� It provides the basis for the replay system presented in this

thesis� ReFocus� Since much of the robustness and autonomy of ReFocus is derived from

Focus� this chapter brie�y describes the Focus system and gives an example derivation� For a

more formal and complete description of Focus� see �Red��a� and �Red��a�� This chapter then

discusses Chapter � in the context of Focus and presents the basic design of ReFocus� The �nal

section illustrates using ReFocus to reimplement a speci�cation after changes�

��� Focus

Focus stores derivations as trees which are manipulated by the tree editor Treemacs �Ham����

Functions and properties are speci�ed in program nodes� Other nodes hold focus expressions

which are either equations de�ning new functions or properties the user intends to prove� When

the user wishes to unfold a focus �expanding it� in Focus terminology
 to do case analysis� a

subtree is created to hold the various cases� each of which is in turn another focus�

As an example� consider the following function to gather the leaves of a tree� The user �rst

creates a node containing the relevant declarations given in Figure ���� Each de�nition is a

conditional rewrite rule of the form l fcg � r� This means that when c holds� l equals r and

any occurrence of l should be replaced by r� The ��� operator is a list constructor similar to

the cons function of Lisp as shown by the type declaration of List� Other type constructors are

denoted by identi�ers starting with capital letters� Functions and variable names start with

lower case letters� Focus also supports property rules� these are speci�ed in a properties� section

of a program node using the same form as de�nitions� Properties can be proven using Focus�

but they are often stated explicitly for expediency�

Focus has four basic operations� The �rst is to introduce a focus speci�cation� this expres	

sion is either a property to be proven or a de�nition of a new function� The second is simplify �
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data List��
 � Nil j ��List��

data BinTree��
 � Leaf��
 j Tree�BinTree��
� BinTree��



function append �� �List��
� List��

 � List��

function fringe �� BinTree��
 � List��


de�nitions�

append�Nil� l
 � l
append�a�x� l
 � a�append�x� l

fringe�Leaf�x

 � x�Nil
fringe�Tree�left� right

 � append�fringe�left
� fringe�right



Figure ���� The de�nition of fringe�

it rewrites a term according to the de�nition rules� Simpli�cation is a form of symbolic evalu	

ation� The third is rewrite� which applies all rules� including both de�nitions and properties�

Simplify and rewrite apply the rules until none is applicable� this reduces a term to its normal

form� Simpli�cation is more e�cient than general rewriting� so it is usually better to simplify

terms before rewriting them� The fourth operation is expand� This is similar to Burstall and

Darlington�s unfold operation� Expand is an inductive operation� while simplify and rewrite

are not� Expansion instantiates subexpressions in all possible ways according to the de�nition

rules� Expansion also introduces an inductive hypothesis formed from the expanded term� ap	

plying this rule during rewriting implements Burstall and Darlington�s fold operation� Focus

is built so that once a term has been expanded� any application of the inductive hypothesis is

valid because it is necessarily applied to a smaller term�

Returning to the fringe function� it is ine�cient because of a second traversal of the list

during calls to append� These calls can be eliminated by merging the fringe and append functions�

The key is to introduce an accumulating parameter for fringe� This is done by introducing a

focus speci�cation�

�atten�tree� accum
 � append�fringe�tree
� accum


where the type of �atten is

function �atten �� �BinTree��
� List��

 � List��


Applying the above operations gives the derivation shown in Figure ���� Observe that it is

organized as a tree with indentation indicating parent	child relationships� In this �gure� each

node in the tree has two parts� the initial state �either as the user entered it or as the result of

an expansion
 and the �nal state� To derive the program� we need the associative property of

append�
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Focus� �atten�tree� accum
 � append�fringe�tree
� accum

�atten�tree� accum
 � append�fringe�tree
� accum

ind� hypothesis� append�fringe�tree
� accum
 � �atten�tree� accum


cases from fringe�tree
�

�� case tree �� Leaf�x
�
�atten�Leaf�x
� accum
 � append�x�Nil� accum

�atten�Leaf�x
� accum
 � x�accum

	� case tree �� Tree�left� right
�
�atten�Tree�left� right
� accum
 �

append�append�fringe�left
� fringe�right

� accum

�atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum



Figure ���� The derivation of �atten�

append�append�u� v
� w
 � append�u� append�v� w



This property is easy to prove using Focus� but we will not do so here to for brevity� The

�rst step in deriving a program for �atten is to expand �unfold
 it based on the de�nition of

fringe� giving cases for tree �� Leaf�x
 and tree �� Tree�left� right
� As shown� the right	

hand side of the �rst case can be simpli�ed and rewritten to x�accum and the second to

�atten�left� �atten�right� accum

� This second step makes use of the associative property of

append and the inductive hypothesis� After �closing� the focus node to freeze the derivation

and make the new rules available to the rest of the tree� we obtain the program

�atten�Leaf�x
� accum
 � x�accum

�atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum



This is an improvement because the calls to append have been removed�

In addition to the initial and �nal states� focus nodes store scripts which record what

operations were applied at each node� Scripts are the primary input used by ReFocus to replay

derivations� The entire derivation history for �atten� including scripts� is given in Figure ����

Besides the names of the steps� script entries can also store arguments and other details

that are needed during replay� Line ��
 in Figure ��� is an example of storing arguments�

In this instance� the append subterms were explicitly rewritten to force Focus to apply the

associativity rule before introducing the call to �atten� Other operations which might be stored

in the scripts include case analysis based on the form �p or not�p
�� introducing abstractions

�such as changing �sin�y� 	 sin�y�� to �LET x � sin�y� IN x 	 x�
� and picking a particular

result when rewrite generates multiple ones� All operations are stored in scripts automatically
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by Focus� In some cases� Focus also stores information about what was accomplished by the

derivation� These are given as multisets stored in the script �such as f�atten �� append� �atten

�� fringeg
� and will be discussed in more detail in Chapter ��

The steps for proving properties are very similar� For example� Figure ��� gives a derivation

of the property

fringe�tree
 � �atten�tree� Nil


This property allows occurrences of fringe to be replaced by �atten in later derivations� The

steps used in the proof are the same as in deriving a program �that is� a subterm is expanded

and each case rewritten
� The primary di�erence is that the goal is to reduce each case to an

identity� Since both cases are of the form x � x in Figure ���� the property is considered to be

proven�

��� Replay in Focus

This thesis presents the replay system we have added to Focus� ReFocus� During replay� ReFocus

creates a new derivation �in the form of a tree
 mirroring the original �or prototype
 derivation�

It uses a depth	�rst traversal of the prototype tree� creating corresponding nodes in the new tree

when they are needed� copying any speci�cations from the prototype nodes to the new nodes�

and executing the commands stored in the prototype�s script� Thus ReFocus is essentially an

interpreter for derivation trees� The remainder of this section discusses how the design issues of

Chapter � are resolved in ReFocus� In particular� we consider grain	size� di�erence propagation�

testing for acceptability� and error recovery�

One of the design principles of Focus is that user	operations should be high	level so that

the user is not forced to control the low	level details of constructing derivations �Red��a�� That

is� Focus has been designed so that the steps in derivations are large	grained� Operations do

not refer to individual rules� and while some operations allow references to speci�c subterms�

these usually take the form of either a single function name or a relatively small term� Building

ReFocus so that it uses the same operations makes it easier for the user to understand what

happens during replay� It also makes ReFocus more robust�

However� using large	grained operations is not a substitute for explicit di�erence propaga	

tion� For instance� if the user were to change the speci�cation to abbreviate append as ap� the

rewrite step ��
 in Figure ��� would fail� This illustrates that di�erence propagation is needed

for expressions� Likewise� it is needed for the terms stored in the data used for checking results�

Finally� di�erence propagation is needed to update focus speci�cations� An initial version of

ReFocus did not propagate di�erences� and our experience with using this version con�rmed

that replay is extremely limited without it�
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The mechanics of testing for acceptability are straight	forward� ReFocus compares the �nal

form of each focus expression against the result stored in the prototype derivation� If the

expression appears to be unacceptable� ReFocus warns the user of a potential problem� At the

leaf nodes of the tree� this checks the �nal program for acceptability� At the internal nodes� it

helps the user determine where the derivation started to fail if the �nal program is unacceptable�

Both tests are done using the methods of Chapter ��

Finally� we consider error recovery in ReFocus� Two types of errors are generated� The

�rst are those for failing to obtain acceptable results� This signals to the user that the results

should be examined carefully� The other type of error is failing to create subtrees� Usually�

this is caused by an expand step failing to �nd a variable to instantiate� When this happens�

expand does not create the cases children paralleling the children in the prototype tree� In

this case� ReFocus simply skips the children in the prototype and continues with the rest of

the derivation� Usually the user will need to return to the node containing the failed step and

repair the derivation by hand�

��� A Replay Example

As an example of applying ReFocus� consider modifying the structure of the tree in the �atten

example of Figure ���� The given function stores information in the leaves of the tree� suppose

the user changes it to store information in the internal nodes instead� That is� the user replaces

the fringe function by the de�nition in Figure ��
� The e�ect of this change is that the part of the

function dealing with the stored information is moved from the base case to the recursive case�

For clarity� and to make the example slightly more interesting� we assume the user speci�es the

following focus equation with the name of the function changed to squash�

squash�tree� accum
 � append�nodes�tree
� accum


where the type of squash is

function squash �� �InTree��
� List��

 � List��


Secondly� we assume that the user has replaced the property for the associativity of append by

the declaration

declare associative append

This allows Focus to use associative matching when rewriting terms involving append�

The �atten derivation can be used as a prototype for deriving a program for squash� as shown

in Figure ���� Since fringe is replaced by nodes� ReFocus expands the occurrence of nodes in this

de�nition to get the two cases shown� The �rst case proceeds as before� but the second case
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is more complicated� Because of the associativity of append� we get two rewrites depending on

whether the associative property is applied before or after applying the rule

append�nodes�tree
� accum
 � squash�tree� accum


The resulting alternatives are

i� squash�Node�left� info� right
� accum
 �

squash�left� info�squash�right� accum



ii� squash�Node�left� info� right
� accum
 �

append�squash�left� info�nodes�right

� accum


The second is less e�cient because it retains the call to append� ReFocus chooses the �rst result

since it is closer than the second to what the user accepted in the original derivation� Thus the

�nal program is

squash�Tip� accum
 � accum

squash�Node�left� info� right
� accum
 � squash�left� info�squash�right� accum



as desired�

����� Grain Size and Replayability

It is worth noting that replaying this derivation would fail if ReFocus relied on small	grained

steps� The sequence of rewrite steps used to transform the right	hand side of the recursive case

of �atten is

append�append�fringe�left
� fringe�right

� accum


� append�fringe�left
� append�fringe�right
� accum


� �atten�left� append�fringe�right�� accum



� �atten�left� �atten�right� accum



where the �rst step is an application of the associative property of append and the last two are

applications of the inductive hypothesis

append�fringe�tree
� accum
 � �atten�tree� accum


In the new derivation� applying the inductive hypothesis �using the associative property of

append
 the �rst time gives the term

squash�left� append�info�nodes�right
� accum



Before applying the inductive hypothesis a second time� the subexpression

��



append�info�nodes�right
� accum


must be simpli�ed to

info�append�nodes�right
� accum


If Focus were to record and reexecute small	grained steps� the simpli�cation step would have

to be inserted by ReFocus during replay to obtain the desired result�

��� Conclusion

This chapter has described a particular transformational implementation system� Focus� and

its replay subsystem� ReFocus� ReFocus inherits much of its robustness and autonomy from

the design of Focus� However� it is important that ReFocus compare speci�cations and apply

the di�erences while constructing the new derivation� For example� if ReFocus we to not

change fringe to nodes before applying the expand step in Figure ���� the expand step would

be likely to fail�� A harder case arises when picking the right alternative in the recursive case�

These examples motivate the need for analogical reasoning� which is the topic of the next three

chapters� Chapter � discusses what sort of analogical reasoning is needed� Chapter 
 gives

a theoretical description for computing useful analogies� and Chapter � describes a practical

implementation of constructing analogies�

�The expand operation will pick a default subterm to instantiate� but the default is often inappropriate
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Focus� �atten�tree� accum
 � append�fringe�tree
� accum


closed with program��
�atten�Leaf�x
� accum
 � x�accum
�atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum


script�
focus�on�spec�

f�atten �� append� �atten �� fringeg

expand�fringe�tree



cases from fringe�tree
�

�� case tree �� Leaf�x
�
�atten�Leaf�x
� accum
 � append�x�Nil� accum

�atten�Leaf�x
� accum
 � x�accum
script�

simplify�

rewrite�


	� case tree �� Tree�left� right
�
�atten�Tree�left� right
� accum
 �

append�append�fringe�left
� fringe�right

� accum

�atten�Tree�left� right
� accum
 �

�atten�left� �atten�right� accum


script�

simplify�

f�atten �� append� �atten �� append� �atten �� fringe� �atten �� fringeg

rewrite�append
 ��


Figure ���� The derivation of �atten with scripts�
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Prove� fringe�tree
 � �atten�tree� Nil


closed with properties ��
fringe�tree
 � �atten�tree� Nil


cases from fringe�tree
�

�� case tree �� Leaf�x
�
x�Nil � �atten�Leaf�x
� Nil

x�Nil � x�Nil

	� case tree �� Tree�left� right
�
append�fringe�left
� fringe�right

 � �atten�Tree�left� right
� Nil

�atten�left� �atten�right� Nil

 � �atten�left� �atten�right� Nil



Figure ���� The derivation of a property relating fringe and �atten�

data InTree��
 � Tip j Node�InTree��
���InTree��


function nodes �� InTree��
 � List��


de�nitions�

nodes�Tip
 � Nil
nodes�Node�left� info� right

 � append�nodes�left
� info�nodes�right



Figure ���� Speci�cation of squash�

Focus� squash�tree� accum
 � append�nodes�tree
� accum

squash�tree� accum
 � append�nodes�tree
� accum

ind� hypothesis� append�nodes�tree
� accum
 � squash�tree� accum


cases from nodes�tree
�

�� case tree �� Leaf�x
�
squash�Tip� accum
 � append�Nil� accum

squash�Tip� accum
 � accum

	� case tree �� Node�left� info� right
�
squash�Tree�left� info� right
� accum
 �

append�append�nodes�left
� info�nodes�right

� accum

squash�Tree�left� info� right
� accum
 �

squash�left� info�squash�right� accum



Figure ��	� The derivation of squash�
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Chapter �

Analogy and Replay

Analogy is a general mechanism used to transfer knowledge from one domain to another� When

used for problem solving� an analogy is formed by comparing the original and new problems�

The results of this comparison are used to modify the original solution so that it solves the new

problem� In replay� the �problem� is a speci�cation and the �solution� is a derivation used to

create an implementation� Pictorially� we have

original
speci�cation ������������������

analogy
�

new
speci�cation

����������������������������
applied analogy

�

original
implementation

�

original derivation

new
implementation

�

new derivation

Thus� analogy is the mechanism by which di�erences in speci�cations are propagated from one

derivation to another� This chapter considers the issues of building analogies for use in replay��

Section ��� considers the types of di�erences between speci�cations that replay may en	

counter� An important factor in this is how replay is used� When replay is used to propagate

modi�cations� the di�erences are likely to be relatively minor� such as replacing one function

name by another� But when replay is used for derivation	by	analogy� the di�erences are likely

to be major� possibly based on an entirely di�erent set of function names�

The second factor to consider when constructing analogies is deciding how to constrain

them� Constraints are needed because analogy can relate nearly any two concepts� Section ���

�This is in contrast with using replay to implement analogy� as discussed in Chapter 	
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discusses syntactic and semantic constraints and suggests that syntactic ones are more useful

in ReFocus�

Section ���� gives examples of using analogy in ReFocus� These examples show most of the

cases in which analogy is needed� Section ��� expands on this discussion�

The examples and discussions in this chapter lead to using second	order generalization to

construct analogies� A de�nition of second	order generalization and algorithms to compute it

are given in Chapters 
 and ��

��� Di�erences in Speci�cations

The mode in which replay is used�propagating changes or derivation	by	analogy�a�ects the

sorts of di�erences between speci�cations that can be expected to arise� In change propagation�

the di�erences are typically minor� in derivation	by	analogy� they are often extensive� The

mode also a�ects how the analogies are used� In change propagation� typically only a few

terms need to be updated to match the new speci�cation� But in derivation	by	analogy� where

there is much less in common between the original and new speci�cation� the entire derivation

must be updated� However� in spite of the di�erences� these two modes are closely related� if

modi�cations are extensive enough� there is less in common between the old and new derivations

and so the old derivation is used for general guidance rather than as an exact plan�

This section examines the two modes in more detail� It discusses how the modes are used

and what sort of di�erences they generate�

����� Propagating Modi�cations

Speci�cations are modi�ed for a variety of reasons� The most obvious is to correct errors or

provide support for new requirements� For example� the user might add another branch to

an if statement to account for a new case� This corresponds to the sort of changes made

while debugging in traditional programming environments� except that the work is directed

towards changing the speci�cation rather than the implementation� However� speci�cations are

also changed during normal development� Using stepwise re�nement� some functions are left

unde�ned �or stubbed	out
 while the user builds other parts of the system� Once the missing

functions are de�ned� replay is used to integrate them into the rest of the system to provide

further improvements in e�ciency�

When propagating modi�cations in speci�cations� we can expect the changes to be relatively

minor� In particular� most symbol names stay constant� However� we should not assume that

only one change takes place at a time� It is useful to delay running replay until after a number

of modi�cations have been made throughout a system�

Modi�cations can be classi�ed as changes in the following�
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� type signatures� For example� changing

function lookup �� int 	 list�int
 � bool

to

function lookup �� list�char
 	 list�list�char

 � bool

to change from looking up a key in a list to searching for a name in a table�

� the order and names of arguments� For example� changing

exp�x� base
� � � �

to

exp�base� pow
� � � �

Often� this kind of change also involves changing types� though in this example both

arguments have the same type�

� the number of cases in de�nitions� For example� adding a case to a de�nition of

nth member�n� l
 so that it returns Nil if n � length�l
 rather than signaling an error�

This kind of change often re�ects a change in types�

� function and constructor names� For example� replacing occurrences of min by max�

Changing constructor names usually re�ects a change in types�

� the addition of pre� or post�conditions� For example� adding the stability condition to a

quicksort speci�cation�

� the addition or deletion of subterms� For example� changing

f�a � b


to

f�if b �� 
 then In�nity else a � b


Often� as in this example� the new subterm forms a context for some subterm which does

not change�

The most di�cult modi�cation to handle is adding subterms� Consider the above example� If �

is used in other contexts� it may be di�cult to determine which occurrences should be modi�ed�

Some amount of contextual information is needed to disambiguate such transformations�
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����� Derivation�by�Analogy

The derivation	by	analogy mode of replay applies the steps of a solved problem to an unsolved

problem� Using replay in this mode saves e�ort for the user by reusing old designs� For example�

the derivation of a tail	recursive implementation of factorial can be used to guide the derivation

of a program to reverse a list� Though these functions manipulate di�erent sorts of objects

�natural numbers in one and lists in the other
� the derivations are similar�

While the di�erences between speci�cations are usually minor when propagating changes�

they are usually major when using replay for derivation	by	analogy� In particular� identi�er

names in the two problems are usually di�erent� Thus the system must rely more on matching

by position and other syntactic clues�

Another di�cult aspect of derivation	by	analogy is that auxiliary function speci�cations

�focus speci�cations
 must be updated so they apply to the new problem� Again� this is more

of an issue in derivation	by	analogy than in change propagation because of the di�erences in

the names of functions� If replay does not update auxiliary function speci�cations� using replay

for derivation	by	analogy is certain to fail�

����� Determining the Replay Mode

It is not always clear when replay is being used for derivation	by	analogy and when it is being

used to propagate changes� Types can provide useful hints because they appear to change less

when the user modi�es speci�cations� A more pragmatic di�erence is that when replay is used to

transfer knowledge� the old results should be retained instead of replaced� Since automatically

replacing results could destroy work� ReFocus provides two commands� one to replay after

making modi�cations and another for derivation	by	analogy� Thus ReFocus essentially leaves

it to the user to decide how replay is being used� The same de�nition of syntactic analogy is

applied in both cases�

��� Syntactic vs� Semantic Analogies

Analogy is a very �exible mechanism for knowledge transfer because it can relate nearly any

two concepts� This makes it very useful in domains for which there is no complete theory�

However� the �exibility of analogy also means a system can spend too much time evaluating

useless candidates� To make analogy useful� there must be constraints on what can be matched�

This section discusses the two most common types of constraints� syntactic and semantic�

Syntactic constraints are based on the structure of the objects being compared� The most

common constraint is to require matches to be made among objects in the same relative posi	

tions� This assumes is that objects in similar positions serve similar functions� For instance�
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suppose an analogy is being formed between A�B
 and C�D
� The natural match �from the view

of syntax
 is

A 
 C

B 
 D

as opposed to

A 
 D

B 
 C

The second correspondence is unnatural because it does not respect the relationships between

A and B and between C and D�

Semantic constraints are based on the meanings of the terms being matched� This assumes

that useful matches are ones in which paired objects have similar de�nitions� For example� it

is natural to match max and min because each �nds an extremum of a set� Another way to use

semantics is by comparing how objects are used in proofs� either in support of or as supported

by other inferences�

The division between semantic and syntactic information is not clear	cut� For example�

the traditional approach to types suggests that they are semantic� while the categorical view

suggests that they are syntactic� Also� semantic information can be re�ected in syntax� such

as in the de�nitions of max and min� Often the only di�erence between the de�nitions of max

and min is that � has been replaced by �� For the purposes of this thesis� we use a simplistic

distinction� we consider information to be semantic if it is entered by the user primarily for

analogical inferences and syntactic otherwise� That is� information is considered to be semantic

if it can not be extracted from the theory by the given inference engine�

The following paragraphs examine how syntactic and semantic constrains have been used

in previous research on analogy�

Many systems use syntax to generate candidate analogies� Evans �Eva��� uses syntax to

generate candidate matches in solving simple geometric	analogy problems� The base case is a

pair of �gures containing some arrangement of objects� Each �gure is represented as a set of

terms such as

��inside p� p�
 �above p� p�
 �above p� p�



and

��above p� p�
 �above p� p�
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A correspondence is found between the �gures� and this is used to build a map from one �gure

to the other using such relations as remove and translate� Given a third �gure and a small set

of potential matches� the system attempts to �nd the match which can be obtained by applying

the original map to the third �gure�

More recently� Falkenhainer� Gentner� and Forbus have developed a model of analogy which

emphasizes syntactic similarity measures �FFG��� FFG��� Gen��� Gen���� Their work is de	

signed to understand analogies between physical systems such as the solar system and an atom�

These systems are represented using a typed predicate calculus� In this calculus� predicates are

divided into two categories� attributes �monadic predicates
 and relations �non	monadic pred	

icates
� To construct an analogy� attributes are ignored and the remaining predicates matched

to generate a set of possible analogies� Attributes are ignored because research suggests that

people �nd them unimportant in analogies �Gen���� After the initial matching stage� the can	

didate analogies are ranked on the basis of the �order� of the terms� where the order of an

entity is de�ned to be zero and the order of a predicate is one greater than the maximum order

of its arguments�� The theory prefers maps which contain consistent matches for higher	order

relations� Thus the structure	mapping theory emphasizes syntax�

Other systems rely more on semantic constraints� For instance� Kling �Kli��� uses analogy

to help a resolution theorem prover �nd proofs faster by reducing the search space� In his

system� all inference rules are annotated with descriptive properties� Given an example proof�

the system �nds all clauses in a database which match some step used in the example proof�

These clauses are then passed to the resolution theorem prover along with the goal clauses�

The annotations impose semantic constraints on the analogy�

McDermott �McD��� presents another way to constrain semantic analogies� His system

solves planning problems which arise in a paint shop� Given a new task� the system searches

a database for a plan which completes a similar task� Two terms are similar if they have the

same ancestor in a type hierarchy� The terms in the goals of each task are compared� and the

closest match is chosen� For example� �washing� is like �painting� because both are instances

of �spraying�� so a plan for painting a table is used to guide constructing a plan for washing a

safe� Once an analogy has been elaborated� the system uses a theorem prover to verify that the

resulting plan is correct� Since the type hierarchy is a form of de�nition� this system primarily

relies on semantic information�

Both syntactic and semantic constraints have advantages� Syntactic constraints are attrac	

tive because they require no added information from the user� However� syntactic constraints

�This de�nition of order is not standard
 The more common measure of an order of a term is based on its
type
 But in this case� the order is actually the depth of the term
 This has unexpected results
 The order
of Greater�x�y� is one� while the order of Greater�sqr�x��y� is two
 This makes mapping Greater�sqr�x��y� as
important as mapping a causal relation such as Causes�Greater�x�y�� Warmer�x� y��
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do not ensure that the matches are sensible� For instance� replacing addition by equality is

rarely appropriate�� Semantic constraints can reduce the number of such mistakes� However�

semantic constraints are more di�cult to compute because they rely on a deeper understanding

of how objects are used� Alternatively� descriptive properties can be provided so that there is no

need for deep analysis� But this limits the analogies that can be found to just those which can

be inferred from the descriptions� Most systems use a combination of semantic and syntactic

constraints to overcome the problems of each�

Syntactic constraints are particularly appropriate for replay in interactive systems �as op	

posed to rule	based systems
� The extensive structure of terms provides a number of syntactic

clues on how to form correspondences� On the other hand� semantic constraints are less appro	

priate because most interesting objects are de�ned by the user and so unless the user enters

some type of database describing properties of the objects� there is no basis for constraining

analogies� Asking the user to explicitly enter such information is not practical since maintaining

it just for replay is not worth the e�ort�

��� Replay Examples

Before discussing the details of building analogies� let us examine where syntactic analogy is

needed in ReFocus� These examples illustrate why constructing analogies is essential for replay�

How to automate this is the subject of Chapters 
 and ��

The �rst example continues the example from Section ����

Example ��� Compare the derivation of �atten in Figure ��� �page ��
 against the derivation

of squash in Figure ���� There are three places where analogy is needed�

� At line ��
 in Figure ���� the expand�fringe�tree

 operation must be mapped to

expand�nodes�tree

�

� The cases must be matched together� tree �� Leaf�x
 must be matched to tree ��

Tip and tree �� Tree�l� r
 to tree �� Node�l� i� r
� In this example� matching children

according to tree position is su�cient� However� this is an accident of how the fringe

and nodes functions were de�ned� if the de�nitions of one of them listed the recursive

case �rst� then the cases would be in reverse order� Analogy is needed to �nd the closest

matches between the cases so that ReFocus can apply the correct operations to each�

� After the rewrite�append
 step in the second case� ReFocus must choose the best match

between the original result and the two candidates in the new derivation� This is done

�Even in C programs� where such a replacement would be legal�
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Focus� squash�tree� accum
 � append�nodes�tree
� accum


closed with program��
squash�Tip� accum
 � accum
squash�Node�l� i� r
� accum
 � squash�l� i�squash�r� accum


script�

focus�on�spec�

fsquash �� append� squash �� nodesg

expand�nodes�tree

 ��


cases from nodes�tree
�

�� case tree �� Tip�
squash�Tip� accum
 � append�Nil� accum

squash�Tip� accum
 � accum
script�
simplify�

rewrite�


	� case tree �� Node�l� i� r
�
squash�Node�l� i� r
� accum
 �

append�append�nodes�l
� i�nodes�r

� accum

squash�Node�l� i� r
� accum
 �

squash�l� i�squash�r� accum


script�
simplify�


fsquash �� append� squash �� append� squash �� nodes� squash �� nodesg
rewrite�append

pick�squash�Node�l� i� r
� accum
 � squash�l� i�squash�r� accum


 ��


Figure ���� The derivation of squash�
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by passing the term to be chosen as a argument to the pick command� as shown on line

��
� Analogy is needed to �nd the best match�

The next example shows how analogy is needed to transform lemmas�

Example ��� Consider proving a property which states that fringe never returns an empty

list�

len�fringe�tree

 �� 
� False

where len is de�ned as

len�Nil
 � 


len�x�xs
 � S�len�xs



�Note that successor notation is being used to represent numbers� S�

 represents �� and so

on�
 This property cannot be proven without a lemma� In this case� the necessary lemma is

len�fringe�t

 � u �� 
� False

Proving these two properties by mutual induction is simple in that it requires little further

input from the user� The derivation is shown in Figure ���a� where the lemma is shown as a

subtree of the original property�

This derivation sequence can also be used to show a related property�

size�tree
 �� 
� False

where size is de�ned as

size�Leaf�x

 � �

size�Tree�l� r

 � size�l
 	 size�r


The derivation proceeds as before �see Figure ���b
 except that the lemma must be changed to

size�t
 � u �� 
� False

Analogy is needed in order to create the new lemma�

��� Analogy in ReFocus

These examples illustrate the primary places where analogy is needed in ReFocus� These

situations can be divided into two types of problems� how to transform terms stored in the

derivation history� and how to �nd the closest matches between sets of terms�
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Prove� len�fringe�tree

 �� 
 � False

closed with properties ��
len�fringe�t

 �� 
 � False

Prove� len�fringe�t

 	 u �� 
 � False

closed with properties ��
len�fringe�t

 	 u �� 
 � False

cases from len�fringe�t

 	 u�

�� case u �� 
�
len�fringe�t

 �� 
 � False
False � False

	� case u �� S�b
�
S�len�fringe�t

 	 b
 �� 
 � False
False � False

cases from fringe�tree
�

�� case tree �� Leaf�a
�
len�a�Nil
 �� 
 � False
False � False

	� case tree �� Node�l� r
�
len�append�fringe�l
� fringe�r




�� 
 � False
False � False

a� Proof of len�fringe�tree

 �� 
� False

Prove� size�tree
 �� 
 � False

closed with properties ��
size�tree
 �� 
 � False

Prove� size�t
 	 u �� 
 � False

closed with properties ��
size�t
 	 u �� 
 � False

cases from size�t
 	 u�

�� case u �� 
�
size�t
 �� 
 � False
False � False

	� case u �� S�b
�
S�size�t
	 b
�� 
 � False
False � False

cases from size�tree
�

�� case tree �� Leaf�x
�
� �� 
 � False
False � False

	� case tree �� Node�l� r
�
size�l
 	 size�r
 �� 
 � False
False � False

b� Proof of size�tree
 �� 

� False

Figure ���� Tree size properties�
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A number of terms in the derivation history may need to be updated� In many cases� the

term is a reference to some part of a larger term that is being operated on� such as the expand

operation in Example ���� These references are usually small� but updating them correctly is

critical to the success of replay� In other cases� the term to be updated is the speci�cation of

a function or property� such as the lemma in Example ���� Updating these is useful because

large derivations often involve a number of focus speci�cations and making the changes by

hand is tedious� However� these terms are large� so the analogy mechanism is more likely to

fail� Furthermore� they are often subtle because they capture the design intended by the user

by strongly constraining the derivation �Red��a�� In a production version of Refocus� radical

changes would need to be accepted by the user before continuing with a derivation�

Matching sets of terms is equally important� Several Focus operations� such as expand�

create cases by instantiating subexpressions� These cases must be matched during replay so

that the correct prototype script is applied to the correct case� Likewise� when an operation

�such as rewrite
 generates multiple results� ReFocus must choose the result which is the

closest to the result in the prototype�

Another requirement that was not illustrated in the above examples is that ReFocus must

determine when the new derivation is completed� This includes checking the �nal results to

ensure that all the goals were achieved� It also includes checking intermediate results so that

ReFocus can discover when it is failing� One way to check results would be to use analogy

to predict the �nal form of the program� However� this would be di�cult to do accurately�

Instead� ReFocus uses information extracted from a user	speci�ed precedence relation� Because

this information is based on small subterms� analogy can be used to update them reliably during

replay� This is discussed further in Chapter ��

��� Conclusion

In this chapter� we have examined how analogy is useful in replay� what sorts of di�erences

it must accommodate� and what information can be used� In the next chapter� we present a

de�nition of analogy which meets the needs of replay in interactive systems� This de�nition

both generates rules used to transform expressions and gives us a metric for comparing terms

to decide which pairs are maximally similar�
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Chapter �

Analogy by Second�Order

Generalization

As illustrated in Chapter �� analogical reasoning is a necessary part of replaying program

derivations� There are two primary ways in which analogy is used by replay� to update terms

stored in derivation histories� and to match terms between a derivation and its prototype�

Nearly every replay operation uses analogy in one or both of these ways�

While the usefulness of analogical reasoning is clear� how to de�ne it is not� Chapter �

argues that an analogical mechanism for replay cannot rely on semantic information because it

is not readily available� Instead� replay must rely on syntactic information� using commonalities

between the structures of terms to control what sets of symbols are matched to each other� In

this chapter� we use generalization to identify common structure� More speci�cally� we present

a de�nition of syntactic analogy based on second�order generalization� It uses a very �exible

representation for terms to capture similarities even when they are embedded in dissimilar

contexts� This �exibility is especially important to replay�

Section 
�� discusses generalization and its role in analogy� Section 
�� de�nes generalization

using concepts from uni�cation theory� Sections 
�� through 
�
 consider various representations

for terms to maximize the usefulness of the generalization� In those cases where generalization

is well	de�ned� we present algorithms to compute it� Finally� Section 
�� illustrates using

second	order generalization in ReFocus�

��� Generalization and Analogy

Analogy can be viewed as a problem in constructing maps between pairs of terms� This section

describes constructing analogical maps and explains their relationship to generalization� It also

shows that standard de�nitions of generalization are inadequate� This leads to a discussion
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of how terms should be represented to support more useful de�nitions of generalization� This

section concludes with a discussion of related work in generalization and a description of the

notation used to represent substitutions�

There are two stages to building an analogical map� identifying similarities� and constructing

rules from unmatched parts� The �rst stage is generalization� given a pair of instances� �nd a

term which captures as much common information as possible� Variables are inserted as needed

to generalize those subterms which are not common to both instances� The output from this

stage is a pair of substitutions� For example� consider �nding an analogical map from

F�a�G�a� b
� a


to

F�c�H�b� c
� c


One possible generalization is

F�x� f�x� b
� x
 �
��


where sans serif is used to denote constants and italics to denote variables� The substitution

ff �� G� x �� ag maps F�x� f�x� b
� x
 to F�a�G�a� b
� a
� and the substitution ff �� H�� x �� cg

maps F�x� f�x� b
� x
 to F�c�H�b� c
� c
� where � is the commute function which changes u� v to

v� u�

The second stage is map building � using the substitutions to construct rules which trans	

form one system into another� This is done by matching the bindings of the variables in the

substitutions� Pairing the bindings for the variables gives the analogical map

fG� H�� a� cg �
��


Thus the basis of building analogical maps is �nding a generalization of the terms being com	

pared�

Since there should not be any transforms for subterms that are shared between two problems�

an analogical map should contain as few symbols as possible� This means that a generalization

should include as many symbols as possible from each instance term� That is� generaliza	

tions should be maximally speci�c� For example� another generalization of F�a�G�a� b
� a
 and

F�c�H�b� c
� c
 is

F�x� y� z
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This leads to the analogical map

fa� c�G�a� b
� H�b� c
� a� cg

This map is less useful because it contains a redundant rule and because it suggests G can be

replaced by H only when the arguments are a and b� Constructing analogical maps should start

with the maximally speci�c generalization�

The most common de�nition of maximally speci�c generalization was �rst presented in

�Plo��� Plo��� Rey���� Reynolds and Plotkin independently observed that the set of �rst	order

terms along with the relation

v � u �� 
� such that ��u
 � v �
��


and an added top element forms a complete lattice�� This ordering is known as the substitu�

tion ordering� In this lattice� the least upper bound �t
 of two terms is given by Robinson�s

uni�cation algorithm �Rob�
�� Plotkin and Reynolds devised a complementary anti	uni�cation

algorithm to compute the greatest lower bound �u
� An elegant version of this algorithm was

given by Huet �Hue��� LMM����

Algorithm ���

F �� � � � si� � � �
 u F �� � � � ti� � � �
 � F �� � � � si u ti� � � �
 �F � C

s u t � ��s� t
 otherwise

where C is the set of constants �including function symbols
 and � is a bijection between pairs

of terms and a set of variables�

Example ���

F�a�G�a� b
� a
 u F�c�H�b� c
� c
 � F�x� y� x


Where � is

��a� c
 � x

��G�a� b
�H�b� c

 � y

The function u de�nes the maximally speci�c �rst�order generalization of any two terms�

Many systems based on analogy use some variant on this de�nition �Owe���� This is appropriate�

most domains are represented naturally by terms with simple structure� But in domains where

terms have a more complex structure� �rst	order generalization is less useful� For example�

�Assuming that we identify terms which di�er only in the names of their variables
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the analogical map for Example 
��� fa � c�G�a� b
� H�b� c
g� transforms G to H only when

the arguments are a and b� In contrast� the map 
�� transforming G to H is independent of

any arguments that are present� This map is obtained from second�order generalization� First	

order generalization is inadequate because whenever the topmost symbols of two terms di�er�

the entire terms are replaced by a variable and any similarities among the subterms are lost�

The need for capturing common subterms is particularly acute for program derivations�

Consider the problem of �nding an appropriate result to pick in the derivation of a program for

squash in Section ���� We suggested that this would be done by choosing the closest match to

t� �atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum



between

a� squash�Node�left� info� right
� accum
 � squash�left� info�squash�right� accum



and

b� squash�Node�left� info� right
� accum
 � append�squash�left� info�nodes�right

� accum


One possible method to do this would be to choose the match with the largest �rst	order

generalization� However� both t u a and t u b are trivial� x � y� so �rst	order generalization

provides no help��

The solution is to choose a representation for generalizations in which variables can be used

to represent a context� For instance� the f in F�x� f�x� b
� x
 is replaced by G in one case and

H� in the other� This allows common subterms� such as the b� to appear in the generalization

even if they are embedded within distinct contexts� This prevents the subterms from appearing

in the analogical maps� As shown in the squash example� such spurious information can be a

signi�cant problem� In the next section� we consider how to represent terms in which variables

abstract context�

����� Second�Order Generalization with Combinators

To introduce variables which abstract contexts� we must introduce some form of second	order

logic� This allows substituting functions for variables� In the simple cases� the function is the

name of a constant� such as G� In more complex cases� the function reorders or otherwise

manipulates the subterms� such as H� where � switches the order of the subterms c and b� To

�An alternative representation of terms� such as

apply��flatten�left�apply��flatten�right�accum��

improves the �rst�order generalization slightly� but the evidence for choosing one match over another is still
unconvincing
 Changing representations is discussed in Chapter �


��



manipulate subterms� we introduce an equational theory� This section �informally
 introduces

the term representation and equational theory upon which we base generalization� illustrates

using such terms in generalization� and discusses some of the issues of de�ning second	order

generalization�

The standard notation for systems incorporating second	order logic �or� more generally�

higher	order logic
 is typed 		calculus �Chu��� Wol���� However� 		terms are relatively complex

because application is de�ned by variable substitution� �	x�r
s � t if t is r with all free

occurrences of x replaced by s� Equivalently� we can write f�s
 � t where f is de�ned by

f�x
 � r� The di�culty is that there is no control on how s is used within 	x�r� The variable

x may occur once in r� many times� or not at all� In Section 
��� we show that the lack of

restrictions on how variables are used results in second	order generalization not being well	

de�ned�

This motivates turning to notations based on combinators� In contrast to 		calculus� ap	

plication of combinator terms is de�ned by symbols �i�e� combinators
 which control how data

is passed from one function to the next� We will show that by restricting the combinators� we

obtain a class of terms for which generalization is well	de�ned�

The combinators we use are those which are motivated by category theory �cf� �AL��� Cur���

Mac���
� In particular� we consider two types of categorical combinators� monadic combinators

for systems in which all functions have a single argument and cartesian combinators for systems

in which functions may have multiple arguments�

We �rst consider combinators for functions with one argument� i�e� monadic functions�

Because there is only one way to pass data between monadic functions� the combinators for

monadic terms are just composition and identity� Composition is denoted by juxtaposition� if

r and s are terms� then their composition is rs� Identity is denoted by �� �s � s� � s� We call

terms made of these combinators monadic combinator terms� Thus a term such as 	x�F�G�x



is written as the monadic combinator term FG� and the equality �	x�x
��	y�F�y

 � 	y�F�y
 as

� F � F� Furthermore� composition is taken to be associative� so we often omit parentheses and

write terms such as F�GH
 and �FG
H as FGH� Observe that if we interpret � as the empty

string �usually denoted by 

 and composition as concatenation� then monadic combinator terms

are essentially strings� The di�erence is that composition in terms is restricted by types� If the

type of t is X � Y � denoted t � X � Y � and s � Y � � Z� then st is de�ned only if Y � Y ��

To support functions with multiple arguments� we could assume polyadic function constants

and use a notion of composition for polyadic functions �Lam���� However� this makes the

notation overly complex� Instead� we use some form of a product structure to combine multiple

arguments into a single argument� Polyadic functions are then treated as monadic functions

from a product type�

�




The most obvious notion of products is that of cartesian products� We introduce the type

symbol 	 such that if A and B are types� A 	 B is the type representing their product� The

combinators involved with product types are the pairing combinator h� i and the projection

operators � and ��� The term hr� si produces a pair of values and the projection operators

decompose such pairs by selecting one of the components� This motivates the equivalences

�hr� si � r� ��hr� si � s� and h�t� ��ti � t� We call terms made of these combinators cartesian

combinator terms� Cartesian products are used when applying a function to a pair of terms� so

F�a� b
 is written as Fha� bi and the equality �	xy�F�y

�a� b
 � F�b
 as F�ha� bi � F b�

In the combinatorial framework� �rst	order terms can be thought of as �nullary� functions�

We also call these closed terms to emphasize that they have no �useful
 inputs� To distinguish

between �rst	order and second	order terms� we introduce a special unit type u and a combinator

!X � X � u� Any term of type u � B is considered a ��rst	order� combinator term� while

terms of type A� B �for A �� u
 are considered �second	order�� Thus Example 
�� is written

in the combinator notation as

Fha� hGha� bi� aiiu Fhc� hGhb� ci� cii � Fhx� hy� xii

where� if a� b� c have the type u � A and G has the type A 	 A � B� x and y are �rst	order

variables with the respective types u� A and u� B�

Using second	order variables instead of �rst	order variables improves generalization because

second	order variables abstract contexts� For example� even f �b is a second	order generaliza	

tion of even �b and even S �b by the substitutions ff �� �g and ff �� Sg� Thus in the �rst case

f abstracts the empty context and in the second case f abstracts the context S� This allows

the generalization to capture the common occurrence of �b� In contrast� �rst	order variables

must generalize entire terms� For instance� the �rst	order generalization of even �b and even S �b

is even x� which loses the information that �b occurs in both terms� In the case of cartesian

combinators� a second order generalization of Fha�Gha� bii and Fhc�Hhb� cii is Fhx� fhx� bii by

the substitutions ff �� G� x �� ag and ff �� Hh��� �i� x �� cg� Again� the �rst	order generaliza	

tion Fhx� yi is less useful because it fails to re�ect the common b and the second occurrence of

matching a to c� Thus using second	order variables improves generalization�

However� using second	order variables also introduces complexity� Because abstracting one

context may preclude abstracting another� we get multiple maximally speci�c generalizations�

Example ���

AB �
���B�

f�Af�
�B� ��� BA

AB �
�A� ��

g�Bg�
���A�� BA

��



There is no substitution from both of these to some common generalization because substi	

tutions cannot remove symbols� The existence of multiple maximally speci�c generalizations

should not be surprising� it re�ects the multiple ways of transforming one term into another�

In this case� there are two ways to transform AB into BA� delete and append A or delete and

prepend B� There is not enough information in AB and BA to be sure which sequence is in	

tended� Which transformation sequence is more appropriate is best determined by examining

other �possibly semantic
 information�

Thus using second	order variables improves generalization but introduces complexity� In

the �rst	order case� generalizations are unique so they can be de�ned by the greatest lower

bound in a lattice� But in the second	order case� a di�erent approach is needed� Our solution

is given in Section 
��� But �rst� we consider related work and de�ne notation used throughout

this chapter�

����� Related Work

Applications of higher	order logic has become an active area of research� In the early years of

automated theorem proving� Robinson �Rob��� described a system of higher	order logic based

on 		calculus and showed how it would be useful for proving mathematical theorems� Since

then� algorithms for higher	order uni�cation have become available �Dar��� Hue�
� HL��� PJ���

Pie��� Wol���� and these have lead to several systems based on 		calculus such as those described

in �AMCP��� FM��� Gor��� HM��� MN��� MCA��� Nip��� Pau��� PE��� Pfe����

However� while higher	order uni�cation has received much attention� higher	order gener	

alization has not� Much of the work combining higher	order terms and generalization has

been done in the context of explanation	based learning �DM��� MKKC���� �Hag��� considers

generalizing higher	order types from a single proof� �Hag��� Hag��b� Hag��a� show how to con	

struct �rst	order programs from examples by unifying higher	order terms� �HJ��� uses a similar

method to construct de�nite	clause grammars� However� all of this work uses an underlying

theory to control generalization� For replay� such a theory is not available� That is� we are

interested in similarity	based learning �cf� �Mic���
�i�e� learning from comparisons between

examples�rather than explanation	based learning�

The work by Pfenning �Pfe��� is more directly related to the work in this chapter� Pfenning

identi�es a subset of generalizations which has useful properties� This subset consists of those

generalizations which can be classi�ed as higher�order patterns� Introduced in �MN��� and

�Nip���� a 		term �in �	normal form
 is a higher	order pattern if every free occurrence of a

variable f appears as f�x�� � � � � xn
 where each xi is a distinct� bound variable� For example�

	xy�g�x
 is a pattern� while 	x�f�f�x

� 	x�f�x� x
� and f�a
 are not� �MN��� shows that

because maximally general uni�ers between higher	order patterns are unique� they are very

useful in higher	order logic� �Pfe��� shows that the substitution ordering on patterns gives

��



a preorder with unique maximally speci�c generalizations for any pair of terms�� Thus the

pattern restriction leads to well	de�ned generalizations�

Though higher	order patterns have many uses� they are not suitable for replay� The moti	

vation for considering second	order terms is that second	order variables serve as contexts into

which common subterms are embedded� With the pattern restriction� only bound variables

can be embedded within contexts� Because bound variables do not play a major role in re	

playing program derivations� the result is that in most cases only �rst	order variables would

appear within a generalization� Thus generalization using higher	order patterns is inadequate

for replay for the same reason that �rst	order generalization is inadequate�

Other related work comes from generalization modulo a theory� Second	order generaliza	

tion is a speci�c case of E	generalization� that is� generalization modulo an equational the	

ory E� Again� while E	uni�cation has received much attention �see �BS��� for a survey
� E	

generalization has not� Baader �Baa��� discusses generalization for commutative theories and

gives a framework for general E	generalization� This framework is limited to systems in which

there is at most one substitution between two solutions� a more general framework is needed for

second	order generalization� Page and Frisch �FP��� PF��� Pag��� consider generalization with

respect to taxonomic information such as �the mother of an elephant is an elephant�� While

their work is based on �rst	order logic� their framework is closely related to the framework

presented in this chapter�

����� Notation

To emphasize composition� we sometimes write st as s� t� The set of free variables in the term t

is denoted by FV�t
� A term is ground if it contains no free variables� As mentioned in the �rst

section� variables are denoted by italics and constants by sans serif� Generally� we use lower case

to denote �rst	order constants and upper case to denote second	order constants� The major

exception is that when an example uses terms from the Focus programming language� we follow

the convention of Focus in using upper case for constructor terms and lower case for de�ned

functions� Which convention is being used will be obvious from the context�

A substitution � is a �nite map from variables to terms� fx �� t� � � �g� dom��
 denotes the

set of variables bound by � and ran��
 their bindings� x �� t is a renaming if t is a free variable

y� and a substitution � is a renaming if all x �� t � � are renamings�� �id denotes the identity

substitution �ambiguously for any set of variables
� If applying � to term s gives a term t� we

variously denote this by ��s
� � � s � t� or s
�� t� Application of � to s is de�ned only if

FV�s
 � dom��
� Dropping the � � and writing just s� t asserts the existence of a substitution

�More precisely� these generalizations are unique modulo the names of the variables and permutations of the
arguments of free variables


�Note that ff �� x� g �� xg is a renaming by this de�nition


��



from s to t� s �� t asserts that there is no substitution from s to t� Composition of substitutions


 � r� s and � � s� t is de�ned as

� � 
 � fx �� ��
�x

 j x � dom�

g � r� t

Given a theory E� equality on substitutions is de�ned by

� �E 
 � s� t �� �x � dom��
� ��x
 �E 
�x


We usually leave E implicit� To make substitutions easier to read� we often omit the variables

being bound� Speci�cally� we often write a substitution � � s � t as ���x�
� � � � � ��xn
� where

hx�� � � � � xni is the sequence of free variables in s listed in the order they occur when reading

from left to right� For example� f�x� y� x

�a�b�� f�a� b� a
�

��� Maximally Speci�c Second	Order Generalizations

Example 
�� shows that a de�nition of second	order generalization should allow multiple solu	

tions� This section presents such a de�nition motivated by similar properties of second	order

uni�cation� In particular� we discuss minimally complete sets of uni�ers and de�ne minimally

complete sets of generalizations� We then show that such sets are not canonical� but that an

additional condition gives sets which are� This results in generalizations which are useful for

replay� An alternative motivation for our de�nitions is given in Appendix C which applies

concepts from category theory to uni�cation and generalization�

In the �rst	order case� generalization is de�ned by the greatest lower bound in the sub	

stitution ordering� However� Example 
�� shows that greatest lower bounds do not exist for

second	order terms� This is the same as in second	order uni�cation� least upper bounds exist

for �rst	order terms �if the terms are uni�able
� but not for second	order terms�

Example ���

f�Af�
�x� yBz�� xAyBz �

�xAy� z�
g�Bg�

f�Af�
�xBy� z�� xByAz �

�x� yAz�
g�Bg�

There is no most general uni�er of f�Af� and g�Bg� because no uni�er generalizes both xAyBz

and xByAz�

Examples such as 
�� lead to de�ning sets of maximally general uni�ers �Plo��� BS���� Let

U�a� b
 � fh�i � a� ti� �
�
i � b� tiig

��



denote the set of uni�ers� of a and b� and let the application of a substitution to a uni�er be

de�ned by

� � h� � a� t� �� � b� ti � h
 � a� s� 
� � b� si �� � � � � 
 and � � �� � 
�

We call such substitutions uni�er morphisms or sometimes simply morphisms� Recall that we

write u� � u� to assert the existence of a morphism from u� to u�� Then

De
nition ��� " is a minimally complete set of uni�ers �MCSU
 of a and b if it satis�es each

of the following properties�

Soundness� " � U�a� b
�

Completeness� for all u � U�a� b
� there is a v � " such that v � u�

Minimality� for all u� v � "� u� v implies u � v�

For example� 
�� gives an MCSU for f�Af� and g�Bg��

These properties form the basis for de�ning second	order generalization as well� However�

we �rst add another condition to the de�nition� Consider the following uni�ers of x and y�

u� � x
�z� � z �

�z�
y

u� � x
�xy� � xy �

�xy�
y

ui � x
�x�x� � � � xi�� x�x� � � �xi �

�x�x� � � �xi�
y

Each set fuig is an MCSU� Hence completeness and minimality do not lead to �canonical� sets

of uni�ers� The most obvious issue is that uni�ers can have an arbitrary number of variables�

But a second issue is that the sets are not equivalent in the sense that they are not isomorphic�

where

De
nition ��	 Object a is isomorphic to b� written a �� b� if there are morphisms f and g

such that f � a � b� g � b � a� g � f is the identity morphism on a� and f � g is the identity

morphism on b�

In the case of fu�g and fu�g we have

�xy� � u� � u�

�Usually uni�ers are denoted by just substitutions� we denote them by pairs to make the source and destination
of each substitution explicit and to allow a and b to share variables without confusion
 These are often called
weak uni�ers �Ede��� Baa�	�



�



��� z� � u� � u�

��� z� � �xy� � �z� � �id � u� � u�

but

�xy� � ��� z� � ��� xy� �� �id � u� � u�

Using the alternative morphism �z� �� � u� � u� gives similar results� Thus fu�g and fu�g are

not isomorphic� In fact� fuig ��� fujg for all distinct i and j�

For many applications� having a canonical MCSU is unimportant� For instance� a theorem

prover can choose any MCSU since the primary concern is completeness� But in other appli	

cations� multiple MCSUs may be undesirable� This particularly true for logic programming

languages in which the uni�cation algorithm determines the computed answer sets� If there is

no canonical solution� di�erent implementations may produce di�erent answer sets�

One solution is to choose the MCSU with the fewest variables in each uni�er� However�

it is not obvious which variables should be eliminated� An alternative approach is to add a

uniqueness condition�

Uniqueness� If � � u� v and �� � u� v for u � U�a� b
 and v � "� then � � ���

This condition is motivated by discussions in �Gog���� see Appendix C� In the above example�

only fu�g satis�es uniqueness� fuig for i � � does not� Thus� at least in this example� uniqueness

serves to restrict the number of variables� It also results in MCSUs which are canonical up to

an isomorphism�

Theorem ��� If "� and "� are minimally complete sets of uni�ers of a and b satisfying the

uniqueness condition� "�
�� "��

Proof By assumption� for each s� � "� there is an s� � "� and a unique morphism � such

that � � s� � s�� Likewise� there is an s�� � "� and a unique morphism �� � s� � s��� But

because substitutions compose and "� satis�es the minimality condition� s� � s��� Furthermore�

the only morphism from s� to itself is the identity substitution� so ���� � �id � s� � s�� Likewise�

� � �� � �id � thus "�
�� "�� �

The same issues arise in generalization� The dual of De�nition 
�
 can be used to de�ne

generalization� but completeness and minimality do not lead to canonical sets� Consider the

generalizations

Example ��


g� � A �
�A� ��

x�z�
���B�� B

g� � A �
�A� �� ��

xyz
��� ��B�� B


�



Applying �x�� �� z�� to g� gives g� and applying either �xy� z� or �x� yz� to g� gives g�� but g� ��� g��

In general� there may be an arbitrary number of variables in generalizations� most of which are

bound to ��

As for uni�cation� we obtain canonical sets of generalizations by introducing a uniqueness

condition� This has the result of eliminating extra variables such as the y in g�� Variables

in generalizations mark di�erences between terms� so they should play non	trivial roles in any

results examined by the user� In Theorem 
��� below� we show that introducing uniqueness

eliminates such trivial variables�

Dualizing uni�cation gives the following de�nition of generalization� Let

G�a� b
 � fh�i � ti � a� ��i � t
�
i � big

denote the set of generalizations of a and b� and let the application of a substitution to a

generalization be de�ned by

� � h� � t� a� �� � t� bi � h
 � s� a� 
� � s� bi

�� ��t
 � s� � � � � 
� and �� � � � 
�

We illustrate this by a diagram��

t

��
�
�
�
�

�
�
�
�
�
�

��

R
a �



s
�

�


� � b

We say that such a diagram commutes if for any two paths between two terms� the compositions

of the substitutions along each path give the same substitution� Thus the conditions � � � � 


and �� � � � 
� are satis�ed if and only if the above diagram commutes�

De
nition ��� # is a set of maximally speci�c generalizations of a and b if

Soundness� # � G�a� b
�

Completeness� For all g � G�a� b
� there is a g� � # such that g � g��

Minimality� For all g� g� � #� g � g� implies g � g��

Uniqueness� If � � g � g� and �� � g � g� for g � G�a� b
 and g� � #� then � � ���

�This and later diagrams in this thesis were formatted using Paul Taylor�s commutative diagrams style
package



�



We call substitutions between generalizations generalization morphisms� Substituting # for "

in the proof of Theorem 
�� gives

Theorem ���� If #� and #� are maximally speci�c generalizations of a and b� #�
�� #��

Proof Dual of Theorem 
��� �

Since maximally speci�c generalizations are unique up to an isomorphism� we often refer to

the set of maximally speci�c generalizations even though there is usually more than one� We

denote this set by MSG�a� b
�

Example ���� The generalizations in Example 
���

AB �
���B�

f�Af�
�B� ��� BA

AB �
�A� ��

g�Bg�
���A�� BA

comprise MSG�AB�BA
� This is because the only other generalizations inG�AB�BA
 containing

A �for example
 have morphisms to generalizations with only two variables� This is illustrated

by the commutative diagram

f� � � � fnAg� � � �gm

���
��

��
��

��
�

��

HHHHHHHHHHH

��

j
AB �

���B�
fAg
�

�

�B� �� � BA

in which ��� ��� and � map all variables to � except for some fk � ff� � � � fng and some

gk� � fg� � � � gng such that fk �� B � ��� gk� �� B � ��� and ffk �� f� gk� �� gg � ��

We use the following result to establish cases for which MSG is de�ned�

Theorem ���� MSG�a� b
 exists if there is a subset G of G�a� b
 having the following prop	

erties�

i� G is �nite�

ii� for each g � G�a� b
� there is a g� � G such that g � g�� and

iii� if g � G�a� b
� g� � G� � � g � g�� and �� � g � g�� then � � ���

This follows immediately from De�nition 
���

The next three sections consider the existence of maximally speci�c generalizations for

di�erent classes of terms� We �rst examine the monadic combinators because they are relatively

simple to understand and because they illustrate most of the issues� Following this� we consider
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the extension to multiple arguments using cartesian combinators and show that maximally

speci�c generalizations do not exist for this class of terms� This leads to a representation for

multiple arguments for which maximally speci�c generalizations do exist�

��� Generalization of Monadic Combinator Terms

This section considers generalizing terms over �typed
 monadic function symbols� We give a

formal de�nition of the monadic combinator terms� show that matching such terms is decidable�

and that maximally speci�c generalizations exist� We then show that the full set contains too

many generalizations and consider a restriction that gives a more useful set of generalizations�

Finally� we give a semi	e�cient algorithm for computing the restricted generalizations for ground

terms�

Let CA�B be the set of constants of type A � B� and let VA�B be the set of variables of

type A � B� Then the set of monadic combinator terms of type A � B� TA�B � is the least

set of terms consistent with the rules

c � CX�Y

c � X � Y

f � VX�Y

f � X � Y �X � X � X

s � Y � Z t � X � Y

s t � X � Z

�
��


We assume the following equivalences among terms�

�B t� t t �A � t �rs
t� r�st
 �
�



Formally� a �term� is an equivalence class of terms which is the least congruence relation

generated by these equations�	 We assume that the sets CA�B and VA�B are pairwise disjoint�

By this assumption� the constants and variables determine the type of a term� allowing us to

omit type information�

The next sections examine matching and generalizing monadic combinator terms�

����� Matching

Given terms r and s� matching is the process of �nding a maximally general substitution � such

that � � r � s� We discuss matching to improve our understanding of monadic combinator

terms� to establish its decidability� and because matching plays a key role in the de�nition of

MSG�

�In fact� �terms� are simply the arrows of the free category �with types as objects� generated by constants
CX�Y and variables VX�Y 
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Matching monadic combinators is a form of string matching �CLR��� and so is decidable� In

particular� we can �nd a solution by matching terms from left to right� substituting some pre�x

of the unmatched portion �including the empty string
 for variables as they are encountered�

This is constrained by the requirement that substitutions respect the types of the variables�

Example ���� The following sequence illustrates �nding the � such that fCCgfC� ABCCABC�

Assume all of the constants and variables have the type X � X �

fCCgfC ABCCABC assume f �� AB � �

CCgABC CCABC

gABC ABC assume g �� � � �

ABC ABC

� �

Thus �AB� �� � fCCgfC� ABCCABC� This is the only substitution between these two terms�

In general� there may be more than one substitution�

�A�B�� ���AB�� �AB� �� � fg � AB

The following terms cannot be matched�

fA �� B

fAA �� A

In the �rst case� there is no way to convert an A to a B� and in the second case there is no way

to delete an A�

����� Generalization

We now turn to examining generalization over monadic combinator terms� We show that

maximally speci�c generalizations exist for any pair of monadic combinator terms having the

same type�

More speci�cally� we show that MSG�a� b
 is de�ned for the following subset of G�a� b
�

De
nition ���� Let G��a� b
 be the subset of G�a� b
 such that if h�� � s � a� �� � s � bi �

G��a� b
 and f � FV�s
� then ���f
 � ���f
 implies ���f
 � f �

Because constants cannot be eliminated by substitution� the number of constants and variables

in generalizations in G��a� b
 is bounded by jaj and jbj� hence

Lemma ���� G��a� b
 is �nite�







Theorem ���	 MSG�a� b
 exists�

Proof We show that there is a subset of G�a� b
 satisfying the conditions of Theorem 
���

by showing that morphisms to generalizations in G��a� b
 are unique� That is� if g� is h�� � s�

a� �� � s � bi in G�a� b
� g� is h
� � t � a� 
� � t � bi in G��a� b
� and �� �� � g� � g� in G�a� b
�

then we must show that � � �� in the picture

s

��
�
�
�
�

��
�
�
�
�
�

��

R
a �


�
t

�

��

��


� � b

Example 
�� shows that this condition is not guaranteed if g� �� G
��a� b
�

We use proof by contradiction� Let s be rfr� for some r and r� where f is the leftmost

variable in s such that ��f
 �� ���f
� Also� let ��f
 � pq and ���f
 � pq� such that p is the

largest common pre�x of ��f
 and ���f
� Then t � ��r
 � pq � ��r�
 � ���r
 � pq� � ���r�
� and

since ��r
 � ���r
� q � ��r�
 � q� � ���r�
� q �� q�� so either q or q� must be �� assume it is q�

Because 
� � � � 
� � �
�� 
��q

�
 � �� so q� � hq�� where h is a variable such that 
��h
 � ��

Likewise� 
��h
 � �� But this contradicts g� in G��a� b
� so � � ��� �

Example ���� MSG�FA�GA
 is

FA �
�F� ��

h�h�A
���G�� GA

FA �
��� F�

h�h�A
�G� ��� GA

This shows that second	order generalization captures common subterms� These generaliza	

tions are maximally speci�c because any generalization with more variables would not be in

G��FA�GA
�

Thus maximally speci�c generalizations exist for monadic combinator terms� However�

Example 
��� suggests that such generalizations are not as useful as they might be� The next

section examines this problem and gives a solution�

����� Restricting MSG

While MSG over monadic combinator terms is well	de�ned� Example 
��� suggests that more

restrictions are needed� The transforms from this example are

F � �

� � G


�



These split the transformation from F to G into two parts� deleting F and introducing G� The

more natural generalization of FA and GA is

Example ���


FA �
�F�

fA
�G� � GA

which captures that F has been replaced by G� This section considers identi�es a restricted

set of maximally speci�c generalization� illustrates that it contains natural generalizations� and

considers its e�ect on generalization�

There are several problems with the generalizations in Example 
���� First� Example 
���

shows that it is not the generalization we would expect� Furthermore� since any subterm

contains an instance of �� the transform � � G is not e�ective because it can be applied any	

where� A third problem is that as the terms grow larger� we obtain even more generalizations�

MSG�AB�CD
 contains six generalizations of the form

AB �
�A�B� �� ��

f�f�f�f�
��� ��C�D�� CD

and

AB �
�A� ��B� ��

f�f�f�f�
���C� ��D�� CD

But perhaps the most serious problem is that adding terms �such as generalizing EF as well as AB

and CD
 does little except increase the number of generalizations and the size of generalization

terms�

The problem is caused by the presence of useless variables in the generalization term� For

instance� h� in Example 
��� plays an unimportant role in the substitution ���G� � h�h�A� GA�

The only reason for not using �G� �� instead is that then the substitutions for h� would be

identical and so h� could be removed� Our solution is to disallow variables that are �redundant�

with other variables in the sense that the generalization can be formed without the extra

variables�

De
nition ���� A pair of free variables f and g in term t are adjacent if t contains a subterm

equal to fg�

De
nition ���� A generalization h�� � t � a�� �� � t � a�i is redundant if f and g are

adjacent free variables in t and any of the following is true� ���f
 �� f � ���f
 �� f � ���g
 �� g� or

���g
 �� g�

Thus the generalizations in Example 
��� are redundant because h� and h� are adjacent and

�for instance
 ���h�
 � F�


�



De
nition ���� We de�ne CG�a� b
� the condensed generalizations� to be the subset of

G�a� b
 not containing redundant generalizations� The maximally speci�c condensed gener	

alizations� denoted by MSC�a� b
� is the set of maximally speci�c generalizations in CG�a� b
�

Since CG�a� b
 is a subset of G�a� b
�

Theorem ���� MSC�a� b
 exists for any monadic combinator terms a� b having the same type�

Examples ���� The following examples illustrate MSC�

� MSC�FA�GA
 � h�F� � fA� FA� �G� � fA� GAi� as desired�

� MSC�AB�CD
 � f�AB� � f � AB� �CD� � f � CDg� all other generalizations contain

redundant variables�

� MSC�A�A
 � f�id � A � A� �id � A � Ag� In contrast� MSG�A�A
 includes general	

izations such as h���A� � fg � A� �A� �� � fg � Ai� Thus MSC contains more natural

generalizations in even simple cases�

� As with MSG� MSC may contain more than one generalization�

MSC�AB�BA
 �

AB �
���B�

f�Af�
�B� ��� BA

AB �
�A� ��

g�Bg�
���A�� BA

Likewise� MSC�BB�ABC
 �

BB �
�B� ��

f�Bf�
�A�C�� ABC

BB �
���B�

g�Bg�
�A�C�� ABC

The second case shows that multiple generalizations can arise from multiple substitutions

between terms�

� Example ��� �p� ��
 provides an example from Focus� MSC�len fringe tree� size tree
 is

len fringe tree �
�len fringe�

f tree
�size� � size tree

In contrast� �Pfe��� disallows this generalization because f tree is not a higher	order pat	

tern� The only generalization satisfying the pattern restriction is

len fringe tree �
�len fringe tree�

x
�size tree� � size tree


�



This generalization is not useful because the rule obtained from it cannot be used to

transform the lemma

len�fringe�t

 � u �� 
� False

This illustrates why higher	order patterns are not appropriate for replay�

As it turns out� morphisms between generalizations inCG�a� b
 are unique� that is� CG�a� b


is a preorder �for the basis of a proof� see �HR���
� This allows us to introduce the following

notation�

De
nition ���� Whenever g� � g� in CG�a� b
� we say that g� is more general �or� equiv	

alently� less speci�c
 than g�� This is written as g� � g�� We write g� � g� if g� �� g� as

well�

Alternative de�nitions� however� do not result in a preorder� For example� we could allow

adjacent variables f and g in h�� � t � a�� �� � t � a�i if neither �� nor �� maps f or g

to �� This represents a compromise between the minimal number of variables in MSC and

their proliferation in MSG� This looser restriction leads to a system in which generalization

morphisms are not always unique� as illustrated by the following example�


Example ����

f�f�f�

���
��

��
��

��
�

�A�B�C�

HHHHHHHHHHH

�A�B�D�

j
ABC �

���C�
AfBg

�Af�B� g�

��

�A� fB� g�

���D� � ABD

Which de�nition of redundance works best depends upon the application�� we consider only

the most restrictive version here because it works well for replay when we make application

explicit and because the algorithm to compute it is more natural� Exploring other de�nitions

of redundance is left as future work�

In this section� we have identi�ed a restricted set of maximally speci�c generalizations�

MSC� and gave examples showing that this set provides more natural generalizations� In the

next section� we show how to compute this set�

����� Computing MSC

Since G��a� b
 �and so CG�a� b

 is �nite and matching monadic combinator terms is decidable�

we can �nd MSC�a� b
 by generating CG�a� b
 and comparing all its objects against one an	

�Note that the bottom generalization is not inG��ABC�ABD�� so this example does not contradict Theorem �
	�

	This is why we did not disallow adjacent variables to obtain canonical sets of generalizations in Section �
�
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other� However� there is a more practical algorithm suggested by the observation that given

a generalization h�� � t � a� �� � t � bi in which some substitution in �� and �� contains a

common subterm� then the subterm can be factored out� This section presents this algorithm

and proves its correctness�

The algorithm presented here is restricted to generalizing ground terms� Extending it to

non	ground terms is possible� but adds complexity� particularly in the correctness proof� It

is also not necessary for our application� generalizing programs in replay does not involve

non	ground terms� Thus the algorithm is restricted to ground terms for simplicity�

While this algorithm is more practical than generating all of CG�a� b
 and searching for

maximally speci�c generalizations� it is still expensive because it computes the same general	

ization in multiple ways� But it is useful to examine the algorithm because it characterizes

the maximally speci�c condensed generalizations� Furthermore� this algorithm is also useful

for combinators supporting multiple arguments� For methods that lead to a much more e�	

cient� though less intuitive� generalization algorithm� see �Mye���� �MM�
� describes using the

more e�cient algorithm to implement the popular �le	comparison program diff� Thus a third

contribution from the following algorithm is that it relates generalization and the diff utility�

The steps for specializing generalizations of a and b are given by the following rules� The

rules maintain the invariant that if generalization g� in CG�a� b
 is transformed into g�� then

g� is a generalization in CG�a� b
 and g� � g�� First� note that

Observation ���	 If g � CG�a� b
� then g� � h�a� � x� a� �b� � x� bi � g�

This observation suggests a starting point for computing MSC�

Algorithm ���� To compute MSC�a� b
� we start with g� � CG�a� b
 and continue special	

izing the generalization until no rule is applicable� To simplify the notation� we represent each

generalization h�� � t� a� �� � t� bi by the triple ht� ��� ��i� The rules are of the form

t� ��� ��

t�� ���� �
�
�

where ht�� ���� �
�
�i is �strictly
 more speci�c than ht� ��� ��i�

Delete Variables with the same binding in both substitutions can be removed�

t� �� � ff �� sg� �� � ff �� sg

ff �� sg�t
� ��� ��

Merge Variables with the same bindings within each substitution can be merged�

t� �� � ff �� r� f � �� rg� �� � ff �� s� f � �� sg

ff � �� fg�t
� �� � ff �� rg� �� � ff �� sg

��



�ABCB�
f

�ADCD�

���BCB�
hAh�
�
�hAh��

���DCD�

�BCB�
Ah�
�
��� h��

�DCD�

�B�B�
AfCf �
�
�fCf ��

�D�D�

�B�
AfCf
�
�f� f �

�D�

ABCB
�

ADCD
�

Figure ���� Generalizing ABCB and ADCD�

Factor Finally� common constants can be factored out�

t� �� � ff �� rKr�g� �� � ff �� sKs�g

ff �� hKh�g�t
� �� � fh �� r� h� �� r�g� �� � fh �� s� h� �� s�g

where K � CX�Y and where h and h� are fresh variables�

We use g� �� g� to denote applying a step to transform g� into g�� The transitive closure

of �� is written as ���� Using ��� the set MSC can be computed by gen de�ned as

gen�a� b
 � fg j g� ��
� g� and � 
g� such that g �� g�g

Example ���
 Figure 
�� illustrates each of the steps of Algorithm 
���� From top to bottom�

the steps are Factor� Delete� Factor� and Merge� There is one other sequence in which C

is factored out before A� but the �nal result is the same�
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Figure ���� Construction for Lemma 
����

������� Correctness

The remainder of this section shows that gen�a� b
 computes MSC�a� b
� The heart of the proof

is showing that the ��	rules completely specify when one generalization is strictly more speci�c

than another� The reader may skip ahead to Section 
�� without missing crucial material�

Lemma ���� If g� is in CG�a� b
 and g� �� g�� then g� is in CG�a� b
�

Lemma ���� Whenever g�� g� are in CG�a� b
 and g� �� g�� g� � g��

Proof Observe that each step is of the form ht� ��� ��i �� h��t
� ���� �
�
�i where � is a gener	

alization morphism� This gives g� � g�� To complete the proof� we must show g� �� g�� This

is trivial for the Delete and Merge steps� For the Factor step� g� �� g� because there is no

substitution which deletes a constant� �

Finally� we show that ��	steps do not reduce the number of possible generalizations� That is�

given a speci�c generalization� the set of��	steps completely covers all maximal generalizations

which are more instantiated than the given one�

Lemma ���� Whenever gr � MSC�a� b
� gt is in CG�a� b
� and gt � gr� there is a gs in

CG�a� b
 such that gt �� gs and gs � gr�

Proof Let gt be h�� � t � a� �� � t � bi� gs be h
� � s � a� 
� � s � bi� and gr be

h�� � r � a� �� � r � bi� Then Figure 
�� illustrates the relationships between gt� gs� and gr�

We show that for any �r� there is a ��	step which generates an appropriate gs� In each case�

��



we only identify which step is applicable� refer to the algorithm for the details of constructing

gs and �s�

If all substitutions in �r are renamings� then there are f� f � � FV�t
 such that f �� f � and

f �� f � � �r� Thus Merge can be applied� Otherwise� choose f � FV�t
 such that �r�f
 is

not a renaming� and let �r�f
 � Hp such that H �� � unless p � �� There are three cases for

H �

i� H � �� ���f
 � ����r�f

 � � � ����r�f

 � ���f
� so Delete can be applied�

ii� H is a constant K ��� �
� head����f

 � head�����r�f


 � K � head�����r�f


 �

head����f

 where head is de�ned as

head�t
 �

��
� � if t � �

x if t � xs for a symbol x �� �

Thus Factor can be applied�

iii� H is a free variable� By assumption� p �� �� If head�p
 is a free variable� then gr is

redundant� a contradiction� If head�p
 is a constant� then head�p
 must appear in both

���f
 and ���f
� so Factor can be applied� �

These three lemmas give us

Theorem ���� �Soundness� If g is in gen�a� b
� then there is a g� � MSC�a� b
 such that g

is isomorphic to g��

and

Theorem ���� �Completeness� If g is in MSC�a� b
� then there is a g� � gen�a� b
 such that

g is isomorphic to g��

Thus MSC over monadic combinator terms is well	de�ned� useful� and computable� We

next consider extensions to support pairs of terms�

��� Generalization of Combinators for Product Types

While generalizing monadic combinator terms provides useful results� support is needed for

functions with multiple arguments� As described in Section 
����� the standard representation

for multiple arguments is to use cartesian products� In this section� we de�ne the cartesian

combinator terms and show that while matching cartesian combinator terms is well	de�ned�

generalization is not� This leads to considering another representation of pairs of terms for

which generalization is well	de�ned�

��



To incorporate products� we extend TA�B by adding the following rules to the rules �
��


for monadic combinators���

s � X � Y t � X � Z

hs� ti � X � Y 	 Z �X�Y � X 	 Y � X ��X�Y � X 	 Y � Y

!X � X � u

The �rst row introduces products and functions to access their components as described in

Section 
����� The second row introduces the function !� This is the function which sends any

type to the unit type� u� As described in the Section 
����� the unit type is used to represent

closed terms� !X is used to ignore an input by mapping it to the unit type� In 		calculus� t!

would be written as 	x�t where x does not occur in t� To maintain the distinction between !

and other combinators� we assume that there are no functions of type X � u except !X �note

that �u � !u
� that is� !X is unique for any X �

In addition to �
�

� we assume the following equivalences between terms�

�hp� p�i� p ��hp� p�i� p� h�r� ��ri� r !A t� !B

These can be used to show that hp� p�ir � hpr� p�ri� this allows embedding a term within a

context� For example�

fhghleft� righti� accumi � fhleft� h fhright� accumii

generalizes

�attenhTreehleft� righti� accumi � �attenhleft� �attenhright� accumii

and

squashhNodehleft� hinfo� rightii� accumi � squashhleft� �hinfo� squashhright� accumiii

by the substitutions

ff �� �atten� g �� Tree� h �� �g

and

ff �� squash� g �� Nodeh�� hinfo!� ��ii� h �� �hinfo!� �ig

We next consider matching cartesian combinator terms�

�
Note that these form the arrows of a cartesian free category with �nite products


��



����� Matching

As shown by Bellegarde �Bel���� there may be an in�nite number of matching substitutions

between two cartesian combinator terms� For example� fg and AB �where A�B � CX�X
 has

three obvious matching substitutions� �A�B�� ���AB�� and �AB� ��� but also substitutions such as

��� hAB��i� �where � is a placeholder for any arbitrary term
� ���� hhAB��i��i�� etc��� This

is caused by allowing variables to be instantiated to terms which return products� Bellegarde

solves this problem by characterizing solution sets using special variables� Another solution is

to restrict CA�B and VA�B so that B is not a type of the form X 	 X �� In our case� this

is not a severe restriction since the language used in Focus does not allow functions to return

�anonymous
 products��� Besides making the problem �nitary� it also means that the cartesian

combinators are equivalent to second	order 		terms� The result is that matching cartesian

combinators is very similar to matching second	order 		terms �HL���� Some examples�

�Fh��Q��i� � ghP� �i � FhP�Qi

�FhP���Q��i� � ghP� �i � FhP�Qi

�Fh�� �i� � fP � FhP�Pi

The �rst example shows how �� ��� and h� i are used to embed a term into a context� The second

shows that subterms can be ignored� The third illustrates copying a subterm� The following

terms do not match�

gP �� FhP�Qi

This is because there is no substitution from P to Q�

But while matching cartesian combinators is well	de�ned� the next section shows that gen	

eralizing them is not�

����� Generalization

Adding pairs is necessary for generalizing terms with non	monadic function symbols� But

cartesian products are too unconstrained because using them means that generalization is not

well	de�ned� This section explains why and identi�es restrictions to make generalization well	

de�ned�

We can show that

Theorem ���� Given a� b � TX�Y � there is no subset of G�a� b
 satisfying De�nition 
���

��Note that we are assuming that the types of f and g are being instantiated during matching

��Fixing the types of f and g also gives a �nite set of solutions� but is redundant with disallowing functions

that return products
 Lemma B
		 shows that disallowing functions which return products is necessary to make
generalization well�de�ned


�




This result is proven in Appendix A� but the basis of the proof is illustrated by considering

generalizations reachable from h��� � fha� bi � a� ���� � fha� bi � bi� Let c be a term in Tu�X �

then the commutative diagram

fha� bi

���
��

��
��

��
�

���

HHHHHHHHHHH

����

j
a �

���
fhfha� c!i� fhc!� bii

�fhfh�� c!i� fhc!� ��ii�

� ���� � b

has no upward generalization morphism� Further� a morphism of the form

ff �� fhfh�� c!i� fhc!� ��iig

can be applied to every generalization reachable from

h��� � fha� bi � a� ���� � fha� bi � bi

This means that there is an in�nite supply of connected generalizations in MSG�a� b
� Since

the minimality condition of De�nition 
�� implies that the only generalization morphisms in

MSG�a� b
 must be identity substitutions� generalizing cartesian combinator terms�and second	

order 		terms�is not well	de�ned�

The problem is that cartesian combinators allow subterms to be ignored� For example�

��� � fha� bi � a ignores the second argument to f � Likewise� �b!� � h a! � b! ignores the

argument a� Intuitively� a generalization should contain only those subterms that appear in

both instances� That is� given h�� � t � a� �� � t � bi� both �� and �� should use all of t in

order to construct both a and b� This problem leads us to considering the relevant combinators

�cf� �Mac��� Jac���
� These are combinators which necessarily preserve all subterms during

application� We show that using relevant combinators gives well	de�ned� computable� max	

imally speci�c generalizations� The signi�cance of choosing the relevant combinators is that

relevant combinator terms are a proper subset of cartesian combinator terms in the sense that

for every relevant combinator term there is a corresponding cartesian combinator terms but not

vice versa� The next section introduces relevant combinator terms and shows that they lead to

well	de�ned and useful generalizations�

��� Generalization with Relevant Combinator Terms

Using relevant combinators represents an alternative approach to introducing pairs of terms�

In place of the combinators h� i� �� ��� and !X � we introduce combinators which rearrange terms

��



without deleting subterms� These combinators are known as the relevant combinators because

of their relationship to relevant logic �cf� �Rea��� Jac���
� a logic based on the premise that an

argument is valid only if all the assumptions made are relevant to the conclusion� This section

describes the relevant combinators and discusses matching and generalizing relevant combinator

terms� We then revise the de�nition of MSC to account for pairs and extend Algorithm 
��� to

compute such generalizations� Finally� Section 
�� shows that these generalizations are useful

in replay�

For relevant combinators� we denote pair types as A � B rather than A 	 B to be neutral

about what kind of products are involved� To support rearrangement� we expect a number of

types constructed from � and u to be isomorphic� For example�

A � �B �C
 �� �A �B
 � C

A � u �� A

u �A �� A

A �B �� B �A

�A �B
 � �C �D
 �� �A � C
 � �B �D


All of these isomorphisms exist in the cartesian product structure� For example�

hh�� ���i� ����i � A 	 �B 	 C
� �A	B
 	 C

and

h��� h���� ����ii � �A	 B
	 C � A	 �B 	 C


are inverses� However� the cartesian combinator terms achieve them by repeatedly duplicat	

ing and discarding information� But the isomorphisms do not really involve duplication and

discarding� merely rearrangement�

To express such rearrangements� we propose a notation called restructors��� A restructor

is a pair of two patterns� written as p �� q� where each pattern may contain variable symbols

x� y� � � �� a special symbol �u� and the binary operator ���� The following examples illustrate

restructors�

x � �y � z
 �� �x � y
 � z � A � �B � C
� �A �B
 � C

x � �u �� x � A � u� A

�x � y
 � �z �w
 �� �x � z
 � �y � w
 � �A �B
 � �C �D
� �A � C
 � �B �D


��These are closely related to KM�graphs �KM�	� BCST���


��



Note that restructors are functions and there is an obvious notion of type	correctness for them�

Further� every variable occurring in a restructor must occur precisely once to the left of ��� By

considering di�erent classes of restructors� we obtain di�erent kinds of product structures�

�� Linear combinator terms or symmetric monoidal combinator terms � Every variable oc	

curring in a restructor occurs precisely once to the right of ��� One assumes that all

restructors between two given types A and B are equal�

�� A
ne combinator terms � Every variable occurring in a restructor occurs at most once to

the right of ��� Note that we can de�ne the projection and ! operators as

� � �x � y
 �� x� �� � �x � y
 �� y� and ! � x �� �u

�� Relevant combinator terms � Every variable occurring in a restructor occurs at least once

to the right of ��� Note that we can de�ne a pairing combinator based on the restructor

x �� x � x which duplicates terms�

hr� si � �r � s
�x �� x � x


�� Cartesian combinator terms � no restrictions on variables�

Thus the four classes of combinator terms are related as follows �Jac����

a�ne � symmetric monoidal � projections

relevant � symmetric monoidal � duplication

cartesian � symmetric monoidal � projections � duplication

More formally� each side of a restructor is a pattern in the least set of terms consistent with

the relation �P de�ned as

s �P X t �P Y

s � t �P X � Y

x � VX

x �P X �u �P u

We say that a restructor is relevant if each variable in the left	hand side occurs in the right	hand

side�

Given �P � we de�ne the relevant combinator terms TA�B as the least set of terms consistent

with �
��
 and the rules

p �P X q �P Y FV�p
 � FV�q
 linear�p


p �� q � X � Y

s � X� � Y� t � X� � Y�

s � t � �X� �X�
� �Y� � Y�


��



where linear�p
 is true if each variable in p occurs only once� To reduce the number of paren	

theses� we assume that function composition binds more closely than � and � more closely than

��� To maintain the distinction between u and other types� and to avoid complications with

de�ning composition� we assume CX�u and VX�u are empty�

In addition to �
�

� we assume the following equivalences between terms�

�s� � s�
�t� � t�
 � s�t� � s�t�

�X � p �� p where p �P X

p �� q � 
�p
 �� 
�q
 if linear�
�p



�p �� q
t � ��q
�r �� 
�q

 if ��p
 � t and 
�p
 � r

�p �� q
�r �� p
 � r �� q

�p� �� q�
 � �p� �� q�
 � p� � p� �� q� � q� if linear�p� � p�


�
��


In the above� 
 is a mapping from pattern variables to patterns and � is a mapping from pattern

variables to terms� Note that the �rst and second rules imply �X � �Y � �X�Y �

Examples ���� Let A�B � CX�Y and C � CY�Z � Then

�z �� �u � z
CA � ��u � CA
�x �� �u � x


�x �� x � x
�x � �u �� x
 � x � �u �� x � x

��u � �y � y
�
 �� �y � y�
 � y
��u � �A � B

 � ��A � B
 �A
��u � �x � x

�
 �� �x � x�
 � x


�y � y� �� y� � y
�A � �B � B

�x �� x � �x � x

 � ��B � B
 �A
�x � x� �� x� � x
�x �� x � �x � x



� ��B � B
 �A
�x �� �x � x
 � x


Relevant restructors cannot delete subterms �such as changing A � B to B
 because of the

restrictions that p is linear and each free variable in p must occur in q� Thus x � y �� x �that is�

the cartesian combinator �
 is not a relevant restructor because it deletes the subterm matched

by y� Deleting occurrences of �u is allowed� but this is primarily for consistency with category

theory� Since by assumption the only function with the output type u is �u� deleting occurrences

of �u is not used often in generalization� In practice� the more typical operation is to insert

occurrences of �u� Since we use u to represent closed terms as with cartesian combinators�

inserting occurrences of �u is used to embed a closed term into another term� For example�

F�� � b
�x �� x � �u
a � F�a � b
��u �� �u � �u
 �
��


embeds a into the context F�� � b
�

��



Writing terms such as �x �� x��u
 is tedious� and so we often use the following abbreviations

�assuming p �P X � q �P Y � and r �P Z
�

associate left� �X�Y�Z � p � �q � r
 �� �p � q
 � r

associate right� ���

X�Y�Z � �p � q
 � r �� p � �q � r


delete left� 	X � �u � p �� p

insert left� 	��

X � p �� �u � p

delete right� �X � p � �u �� p

insert right� ���

X � p �� p� �u

commute� �X�Y � p � q �� q � p

duplicate� �X � p �� p � p

We usually drop the type subscripts when they can be inferred from the context� Thus Equa	

tion 
�� can be written as

F�� � b
���a � f�a � b
�

These abbreviations re�ect the standard combinators for symmetric monodial categories �Mac���

Jac���� For convenience� we give the set of all such restructors a name�

De
nition ���	 De�ne the set R be the terms generated by the production

R ��� � j � j ��� j 	 j 	�� j � j ��� j � j � j RR j R �R

Clearly any t � R can be represented by a unique p �� q modulo the sets of equivalences �
�



and �
��
� Since the equations

�� � �
��� � �
 � �� �� � �
�� � � 	

	u � �u ��� �

	�� � �� � �
��� � �
 � ���

��� � �
�� �� � �
� ��� �

	u�u � �u �u�u � �u

are satis�ed� �Mac��� gives us the opposite direction�

Theorem ���� �Coherence� For every relevant p �� q� there is an r � R such that r � p ��

q�

��



One consequence of Theorem 
��� is that the relevant combinator terms are a subset of the

cartesian combinator terms� Let

s � t� hs�� t��i �� �� � ���
 � ���� 	X � �u�X

� � h��� �i � � h�� �i �X � �X�u
�
��


Because these satisfy the preconditions for Theorem 
��� as well� we can show that there is

a cartesian combinator term corresponding to every relevant combinator term� The fact that

x � y �� x is not relevant means that the relevant combinator terms are a proper subset of the

cartesian combinator terms�

One of the advantages of relevant combinator terms is that they can be drawn as graphs

with composition denoted by a lines and pairs by diamonds� as shown in Figure 
��� Restructors

can be drawn as boxes with labeled inputs and outputs� as shown in Figure 
��� The graph

notation also leads to the algorithm for matching relevant combinator terms� This is explained

in the next section�

����� Matching

Because of the � and 	 combinators and their inverses� matching relevant terms has the same

di�culty as cartesian terms� there may be an in�nite number of matches� Consider matching

fg to AB where A�B � CX�X � The three obvious substitutions are identical to those for monadic

combinator terms� �A�B�� ���AB�� �AB� ��� But because we have pairs� we also have an in�nite

number of other matching substitutions� ���AB � �u�� ���� �AB � �u
 � �u�� ��	� �u � �AB � �u
�� etc�

As with cartesian combinator terms� we make matching �nitary by assuming that the output

types of constants and variables are not pairs�

Since there is a cartesian combinator term for every relevant combinator term� matching

relevant combinator terms is decidable and �nitary� By applying �
��
� we can reduce matching

relevant combinator terms to matching cartesian combinator terms� If each term in a resulting

substitution corresponds to a relevant combinator term� the terms can be obtained by applying

the equalities

hs� ti� �s � t
� � � x � y �� x �� � x � y �� y ! � x �� �u

and then rules �
�

 and �
��
� An alternative algorithm which does not depend on using

cartesian combinators is given in Appendix B�

��
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Figure ���� Examples of relevant combinator terms drawn as graphs�
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�

x � x
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x � x

x

x

x � �u

�
x � x

x � �u

f�a � b
� �x �� x � x
�x � �u �� x
 � x � �u �� x � x

�x� � y�
 � x�

��u � x
�
 � y�

�

�

�u A B
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�

�

�

�

A B A

�

�

�x� � y�
 � x�

��u � x�
 � y�

��u � �x� � y�
 �� �x� � y�
 � x�
��u � �A � B

 � ��A � B
 � A
��u � �x � y
 �� �x � y
 � x


Figure ���� Examples of relevant combinator terms with restructors drawn as boxes�

��



We can also view matching relevant combinator terms as �lling in trees� For example� to

match f�P � �
 to F�P � Q
� we �rst replace f by F�g� � g�
 to get

F

�

g� g�

�

P �

�

�

F

�

g� g�

P �

�

and then g� by � and g� by Q to get

F

�

� Q

P �

�

�

F

�

P Q

�

Unfortunately� using graphs to represent terms is verbose� so we cannot do so in the gener	

alization examples� But the reader is encouraged to apply this representation when verifying

examples�

����� Generalization

Because relevant combinators cannot delete subterms� we can show that they give the same

results as the monadic combinators� This section gives results for MSG� extends the de�nition

of adjacency to include pairs� and gives an algorithm for computing MSC for ground terms�

Just as for monadic combinator terms� we can show�

��



Theorem ���
 If a and b are relevant combinator terms having the same type� then MSG�a� b


exists�

The proof closely follows that for Theorem 
���� it is given in Appendix B� Relevant combinators

also follow monadic combinators with respect to adjacent variables� That is� adjacent variables

result in many generalizations and ine�ective transforms� However� consider the following

extension to the de�nition of adjacency�

De
nition ���� A pair of free variables f and g in term t are adjacent if there is a subterm

fs in t and a relevant restructor p �� q such that f�p �� q
s � f�g � s�
 for some s��

That is� f and g are adjacent if they are not separated by some constant� For example� f and g

are adjacent in fg� f�s� �g
� and f�r � �g �r�

� With this de�nition of adjacency� De�nitions 
���

and 
��� can again be used to identify a set of condensed generalizations which are computable

and useful� Recall that Theorem 
��� applies to CG�a� b
 as well asG�a� b
 since any morphism

between generalizations in CG�a� b
 is a morphism between generalizations in G�a� b
�

All examples in 
��� hold for relevant combinator terms as well� In addition� we have the

following�

Example ���� MSC�F�a�G�a� b
� a
� F�c�H�b� c
� c

 is

F�x � f�b
 � x


��
�
�
�
�

�a�G�a � �
	���
�
�
�
�
�

�c�H�� � c
����

R
F�a �G�a � b
 � a
 F�c � H�b � c
 � c


To obtain generalization �
��
 proposed in Section 
��� we would need to allow the more relaxed

de�nition of relevance discussed in Section 
����� This is discussed further in the next chapter�

The following example shows that there are pairs of terms with an exponential number of

condensed generalizations�

Example ����

MSC�F�HA� � � ��HAn�� � HAn

� G�HB� � � ��HBn�� � HBn




contains n! generalizations formed by varying which Ai is matched to which Bj �

More examples of condensed generalizations are given in Section 
���

Computing MSC�a� b
 is the same as in Algorithm 
��� except for changing the de�nition

of renaming and for changing the Factor step to support pairs� In Section 
����� we called

substitution x �� t a renaming if t is a free variable y� For relevant combinator terms� this

needs to be generalized�

�




De
nition ���� The substitution x �� t is a renaming if t is the form y� for some free variable

y and some relevant restructor � for which there is a relevant restructor ��� with ���� � � and

���� � ��

For the Factor step� suppose a constant K appears in both bindings for some variable f � K

might be embedded in some pair of the form s��� � �K � � �
s�� To separate K from the context�

we use the equivalence relations for relevant combinator terms to obtain a term of the form

s���K � �
s�� where � �passes through� any data produced by s�� and used by s�� but not K� For

instance� A�B�K � C
 � D
E is equivalent to A�B�� � C
 �D
��K � �
���E as shown in Figure 
�
�

This gives us the rule

t� �� � ff �� r�K � �
r�g� �� � ff �� s�K � �
s�g

ff �� h�K � �
h�g�t
� �� � fh �� r� h� �� r�g� �� � fh �� s� h� �� s�g

Theorem ���� Given t � TX�Y and a constant K in t� there are r and s such that t �

r�K � �
s�

Proof Let t� be t with � �a fresh symbol
 substituted for the occurrence of K we wish

to isolate� Then repeatedly apply the following rewrite rules �without applying any of the

equivalences for relevant combinator terms
 until no rule applies�

r � s � r��� � �u
�
��s

r�� � t
s � r�� � t
�� � �
s if t �� �

r�t� � t�
s � r��t� � t�
�s if � occurs in t�

r�t�t� � t�
s � r�t� � �
�t� � t�
s if � occurs in t� or t�

where t� and t� �� �

r��t� � t�
 � t�
s � r��t� � �t� � t�

�
��s if � occurs in t�

r��t� � t�
 � t�
s � r�� � �
��t� � t�
 � t�
�� � �
s if � occurs in t�

We can use the position of � in t� to show that these rules terminate� �

However� this version of Factor is not complete� K may appear more than once in ���f


or ���f
� and the step must allow all occurrences to be factored at the same time� This is

necessary to support generalizations such as

A�K � K
 �
�A��

fK
�B� � BK �
��


In general� if �n � x �� �x � �x � � ��x � x


 where there are n occurrences of x in the right	

hand side �note that �� � �
� the Factor step must be re�ned to generalize terms of the form

r��nK � �
s�

��



A

�

B

�

K C D

�

�

E

�

A

�

B

�

K C D

�

�

�x� � y
 � z

x� � �y � z


�

K �

�

�x � y
 � z

x � �y � z


E

Figure ���� Isolating K from A�B�K � C
 � D
E�

��



A second issue is that the occurrence of h� in the above version of Factor is not valid� The

types of variables �and functions
 are restricted to be of the type X � Y where Y is not a pair

type� The variable h� in the above step violates this condition� But if s in r�K � �
s is not a

restructor� it must be of the form s� � s�� so

r�K � �
s � r�K � �
�s� � s�
 � r�� � s�
�Ks� � �


Furthermore� if K has the type X� � �X� � � ��Xn�� �Xn
 � � �
 � Y � then s� � s� � �s� � � � �sn�� �

sn
 � � �
� If K�s type has some other parenthesization� we need to apply the appropriate combi	

nation of � and ��� to reorganize the parenthesization� This is done by introducing restructors

from the following language�

De
nition ���� The associative restructors� A� is the set of restructors generated by the

production

A ��� � j � j ��� j AA j A �A

If we let sn represent the term s� � �s� � � ��sn�� � sn
 � � �
� then

Theorem ���� Given t � TX�Y and a subterm Ks with m occurrences in t� there are r� sn�

� � A� and � � R such that t � r��mK��sn
 � �
� �

This follows by generalizing the proof of Theorem 
����

Algorithm ���	 To compute MSC�a� b
 where a and b are ground relevant combinator terms

in TX�Y � apply the steps of Algorithm 
��� with Merge re�ned to use De�nition 
��� and

Factor replaced by the following two rules�

Factor�Constant

t� �� � ff �� r��mK��rn
 � �
�g� �� � ff �� s��m
�

K��sn
 � �
�g

ff �� h�K��hn
 � �
�g�t
�

�� � fh �� r��m � �
� h� �� r�� � � � � hn �� rng�

�� � fh �� s��m
�

� �
� h� �� s�� � � � � hn �� sng

where K � CX�Y � � � A� � � R� and h and hi are fresh variables� Note that � must be the

same in both ���f
 and ���f
� otherwise� ���h
 or ���h
 would not be a relevant combinator

term�

Factor�Restructor Factoring restructors is similar to factoring constants except that we do

not need to introduce the hi�s� By the assumption that no function returns a pair type� given

��



�F�G � G
�
f

�F�H � H
�

���G�G�
h�F�h� � h�
 � �u
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 � �u
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Figure ��	� Generalizing F�G�G
 and F�H�H
�

a � � R in t� there is an r and a � � � R such that t � r�� � �
� �� But since � � must be the same

in both ���h
 and ���h
� we can write �� � �
� � as � ��� This gives us the rule

t� �� � ff �� r�g� �� � ff �� s�g

ff �� h�g�t
� �� � fh �� rg� �� � fh �� sg

where h is a fresh variable� For termination� we must add the condition that there be no

��� � R such that ���� � �� That is� � must contain �X in some form� � cannot be �say
 � or

�u�

Example ���� Figure 
�� illustrates most of the steps of Algorithm 
���� From top to bottom�

the steps are Factor�Constant� Delete� and Merge� In the �rst step� K � F� � � ��

r � s � �� and � � ����

Example ���
 Factoring A from F�A � �A � b

�� � ���
 and G�AC � AC
� where A�C � CX�X

and b � Cu�X � gives a more complex example of applying Factor�Constant� Since ��� � ���


� ����

F�A � �A � b

�� � ���
 � F����� � b
��A � �u
�
��

and

G�AC � AC
 � G���AC � �u
�
��

��



Applying Factor�Constant with m � m� � � gives

f� ff �� F����� � b
��A � �
���g� ff �� G���AC � �u
�
��g

h�Ah� � �u
�
��� fh �� F����� � b
�� � �
� h� �� �g� fh �� G��� � �
� h� �� Cg

The cases where m �� m� violate the condition that � be the same in both ���f
 and ���f
�

Example ���� We illustrate Factor�Restructor by generalizing

F�x � y �� �x � x
 � y
 � F�� � �


and

F�x � y �� �y � x
 � x
 � F���� � �


where x� y �P X �
f� ff �� F�� � �
g� ff �� F���� � �
g

h�� � �
� fh �� Fg� fh �� F��g

Note that Factor�Constant is not applicable at this point�

Thus generalization of relevant combinator terms is well	de�ned and computable� The next

section shows that it is useful�

��
 Applying Second	Order Generalization to Replay

The set MSC�a� b
 identi�es the possible syntactic matches between subterms of a and b� Given

a particular generalization h�� � t� a� �� � t� bi� we can build a set of transforms by identifying

the components of �� and ���

fr� s j f �� r � �� and f �� s � ��g

These transforms can be used in two ways� The �rst use is to update subterms in derivations���

The second use is as a similarity metric� by comparing the size of two transform sets� we can

decide which pair of terms represents the closest match by counting the number of constants

in the transforms� Chapter � describes computing and using transforms in more detail� In the

remainder of this chapter� we look at applying second	order generalization to replay problems

described earlier in this thesis� We also show that using �rst	order generalization is inadequate�

The following two examples illustrate applying second	order generalization to the examples

in Chapter �� In each case� we assume that all instance terms are �rst	order and each function

��Note that we have not given a mechanism for applying transforms� more explicit algorithms are given in
Chapter �


��



has the type � � � � � � � � � where � is the generic type item� types are discussed further in

Section ����

Example ���� Consider Example ��� �p� ��
� in which the proof of

len�fringe�tree

 �� 
� False

was used to show that

size�tree
 �� 
� False

MSC�len fringe tree� size tree
 contains just

len fringe tree �
�len fringe�

f tree
�size� � size tree

which leads to the transform

len fringe� size

Applying this to the lemma

len�fringe�t

 �� 
� False

gives

size�t
 �� 
� False

as desired� This example is fairly simple� yet shows where rules obtained from �rst	order anti	

uni�cation may be overly speci�c� The �rst	order anti	uni�er gives the transform

len�fringe�tree

� size�tree


This transform does not match len�fringe�t

� While this problem could be solved with an

appropriate heuristic for variables in terms� using the second	order transform is more general�

Example ���� Consider Example ��� �p� ��
� Comparing the initial speci�cation

�atten�tree � accum
 � append�fringe tree � accum


to

squash�tree � accum
 � append�nodes tree � accum


gives the transform fringe � nodes� Applying this transform to the expand step updates it

appropriately�

To match the cases� we generalize the possible matches� For the recursive case� the gener	

alizations are

��



�atten�Tree�l � r
�u � a
 � append�append�fringe l � fringe r
�u � a


f��u � a
 � append�w � a


���atten�Tree�l � r
�u � ��
�
append�fringe l � fringe r
�u�

squash�Tip � a
 � append�Nil � a

�

�squash�Tip � ��
�Nil�

and

�atten�Tree�l � r
�u � a
 � append�append�fringe l � fringe r
�u � a


f��l � r
 � a
 � append�append�gl � hr
�u � a


�
��atten�Tree � ��
� fringe� fringe�

squash�Node�l � �i � r
�u
�u � a
 � append�append�nodes l � ��i � nodes r

�u � a

�

�squash�Node��� � �i � ��
	��
 � ��
�
nodes� ��i � nodes
	���

By measuring the relative sizes of the resulting transforms� we obtain a metric for identifying

the closest match� In the �rst generalization� the instance terms contain �� function symbols and

the transform ��� In the second generalization� the instance terms contain �� function symbols

while the transform just ��� Since ����� � ��$ � ����� � ��$� second	order generalization

suggests that the second pair of terms are more closely related than the �rst pair� giving ReFocus

the information it needs to match the recursive cases in the derivations� The base case gives

similar results� In contrast� the �rst	order generalization is trivial� x � y� Since all of the

function symbols appear in the resulting transforms� there is no basis for choosing one match

over the other�

In general� we compare matches between terms by comparing the norms of their generaliza	

tions� where

De
nition ���� Given generalization g � h�� � t � a� �� � t� bi � G�a� b
� its norm� denoted

kgk� is de�ned as

kgk � �j��j� j��j
�jtj

where jtj is a measure of the size of a term and

j�j �
X

x�dom�

j��x
j

��



For this chapter� we de�ne jtj as the number of constants in t�

Finally� analogy is needed to pick the appropriate choice near the end of the script� For this

example� assume � associates to the right� and let �k�f �a� � � �an
 denote applying function f to

arguments a� � � �an� Also� assume that appropriate occurrences of �u are inserted in the term�

We omit these to simplify the notation and since they can be inferred from the context�

The two generalizations are

����atten � ���Tree � l � r
 � a
 � ����atten � l � ����atten � r � a



���f � g�l � r
 � a
 � ���f � l � h ���f � r � a



�
��atten����Tree � ��
	

��� ���

���squash ����Node � l � i � r
 � a
 � ���squash � l ����� � i � ���squash � r � a



�

�squash����Node � �� � i � ��
��� � �� � 	
��
�

���� � i � ��
�x �� �u � �u � x
�

and

����atten � ���Tree � l � r
 � a
 � ����atten � l � ����atten � r � a



���x � f�l � r
 � a
 � g����y � hr � a



�

��atten����Tree � ��
	
���

����atten � l � ��
�x � �u � �u � x
� �atten� ���

���squash � ���Node � l � i � r
 � a
 �
���append � ���squash � l � ���� � i � ���nodes � r


 � a


�

�squash����Node � �� � i � ��
��� � �� � 	��
� ���
append����squash � l � ���� � i � ���nodes � ��




�x �� �u � �u � �u � �u � �u � x
�

Note that the �n notation allows the generalizations to capture common subterms without

being redundant� Further justi�cation for this notation is given in the next chapter� The norm

of the �rst generalization is ����� � ��$� while the norm of the second is ����� � 
�$� Thus

second	order analogy suggests choosing the �rst choice since its structure is closer to the original

result than the second� as desired�

��� Conclusion

Analogical reasoning is a vital part of replaying program derivations� In this chapter� we

have given a de�nition of syntactic analogy based on generalization and showed that �rst	

��



order generalization is not adequate for replay� This lead to using second	order generalization�

which was de�ned by uniquely minimal complete set of generalizations��� We showed that such

generalizations exist when we eliminate combinators which delete useful subterms� Further�

we gave a semi	practical algorithm to compute such generalizations and showed that they are

useful by applying them to replay problems from Chapters � and ��

However� a number of issues remain�

�� How to integrate second	order generalization into a practical replay system� Algorithm 
���

is expensive because it is highly non	deterministic� and so a more practical algorithm is

needed�

�� How to construct transformation rules from generalizations� Both the representation of

the rules and the mechanics of generating them need to be discussed�

�� Whether there a bene�t to considering third	order or higher	order generalizations� Ex	

ample 
�� suggests that third	order generalizations may be useful since in this case the

positions of A and and B are being swapped� But it is not clear how to de�ne such

generalizations or if such generalizations would be useful in practice�

While important� the last issue is not addressed in this thesis� it is left as future work� The

next chapter addresses the �rst and second issues� We give a quadratic	time algorithm for

computing generalizations �under certain assumptions
 and discuss converting generalizations

into useful sets of transforms�

��See Appendix C for an equivalent de�nition based on a categorical framework


��



Chapter �

The Practical Construction of

Second�order Generalizations

Chapter 
 shows that analogy based on second	order generalization provides a �exibility that

cannot be achieved by �rst	order generalization� Second	order variables abstract contexts� so

analogies based on second	order generalizations can take advantage of similarities embedded

within dissimilar contexts� However� while second	order generalization is �exible� it cannot be

applied to replay in its pure form� There are several issues that must be addressed� restricting

the number of generalizations� computing generalizations e�ciently� generalizing terms from

dissimilar domains� and ensuring that the resulting transformation rules are useful�

Restricting the number of generalizations is the most important issue� While the �exibility

of second	order matching makes it necessary to allow multiple generalizations� replay can use

only one at a time� Replay is too expensive to implement it to try all possible generaliza	

tions� Criteria are needed for selecting a best generalization when multiple ones are possible�

Choosing a best generalization is also needed for e�ciency� Computing all generalizations is

expensive� while computing a subset allows optimizations which overlook some possibilities�

Thus restricting the number of generalizations is necessary both to improve e�ciency and to

satisfy replay�

The second most important issue is computing generalizations more e�ciently� Algo	

rithm 
��� is ine�cient because the Factor�Constant step is highly nondeterministic� This

leads to computing the same generalizations in multiple ways� By giving preference to certain

types of generalizations� we change the problem so that dynamic programming �cf� �RND���


can be used to reduce the amount of unnecessary computation� In e�ect� this gives us a varia	

tion on Algorithm 
��� in which applications of the Factor�Constant step are chosen so as to

favor particular generalizations� The result is an algorithm which still takes exponential time

in the worst case� but is quadratic in the expected cases�

�




Whereas the above two issues concern e�ciency� the remaining two issues concern usability�

Generalizing terms from dissimilar domains� as done for derivation	by	analogy� means general	

izing terms when the only thing they have in common is their basic structure� If the problem

domains are very di�erent� the derivations are likely to share very few symbols� This leads to

transforms which are too speci�c in the same way that �rst	order generalizations are too speci�c�

Yet some of the most useful applications of replay involve domains with di�erent namespaces�

Domains often share an underlying structure �in a theoretical sense
� so a derivation may be

more similar to one in a di�erent domain than other derivations in the same domain� The

de�nition of second	order generalization given in Chapter 
 needs to be re�ned so it is useful

when changing namespaces�

The other usability issue is how to turn second	order generalizations into useful transforms�

The problem is that a set of transforms may be ambiguous� For instance� the generalization

h��� � fa � a� �sin� � fa � sin ai leads to the transform � � sin� Such transforms can be

applied anywhere since every subterm contains an instance of �� and so they are not useful�

This chapter discusses using contextual information to disambiguate transforms�

The �rst section of this chapter addresses computing transforms� First� we de�ne a subset

to be computed based on those generalizations giving minimal transforms� Second� we give an

e�cient algorithm to compute preferred generalization terms� Finally� we give an algorithm to

compute transforms from the terms�

The second section of this chapter presents heuristics to make the computed transforms

useful for replay� First� we discuss further heuristics to select preferred generalizations� Second�

we discuss making application explicit to allow generalization across di�erent domains� Third�

we describe a method for disambiguating transform rules so that they are useful to replay�

Finally� we present the entire algorithm and describe its relationship to the generalization

algorithm given in the previous chapter�

This chapter concludes with examples illustrating the use of generalization in replay and a

discussion of its limitations�


�� Computing Transforms

In this section� we present e�cient algorithms to compute a useful subset of MSC�a� b
 and the

associated transform rules� We make the following assumptions�

�� The terms a and b are ground� i�e� they contain no free variables�

�� The terms a and b are �rst	order� i�e� they are combinator terms of type u� X �

�� There is a single base type �� data has the type u � � and functions have the type

� � � � � � �� ��

��



The �rst two assumptions are possible because all terms are ground in ReFocus and the un	

derlying language is �rst	order� These two assumptions simplify generalization� Since a and b

are �rst	order terms� they can be written as t ��u �� �u � � ��u
 �for some grouping of �u � � ��u


where t does not contain any restructors� Because the restructor � in Factor�Restructor must

not have an inverse� and since and 	 and � are inverses of �u� there is no need to consider factor	

ing restructors for �rst	order terms� The third assumption allows generalizing across distinct

domains� such as generalizing a term for computing square roots against a term for reversing

a list� Generalizing types can be done using the techniques of �Pfe���� but doing so introduces

signi�cant complications� Assuming all types are the same avoids these complications�

The following sections present computing transforms� We de�ne the subset of generalizations

to be computed and give algorithms to compute the generalization terms and corresponding

sets of transforms� For both algorithms� we brie�y analyze their computational complexity and

show that they are e�cient enough for use in replay�

	���� Limiting Generalizations by Maximizing Term Sizes

An important reason for the presence of multiple generalizations is repeated occurrences of sym	

bols� Each occurrence of a symbol F in one term can be matched against di�erent occurrences

of F in another term� For example�

Example 	�� MSC�FFa� FFb
 is

g� � FFa �
�a�

FFx
�b� � FFb

g� � FFa �
�F� a�

hFx
��� Fb�� FFb

g� � FFa �
��� Fa�

hFx
�F� b�� FFb

generalize FFa and FFb� Intuitively� g� is the best of these three because it re�ects the most

likely change made by the user� replacing a by b� In other words� g� is preferred because more

information �that is� a greater number of constants
 appears in the generalization term and less

information appears in the substitutions� Restricting MSC to generalizations with maximally

large source terms leads to simpler sets of transforms between problems� This section present

a heuristic used to minimize sets of transforms�

We formalize this heuristic as follows�

De
nition 	�� Let size be a metric that determines the �size� of generalizations and � be

an ordering on sizes� Then�

MSCmax�a� b
 � fg � g � MSC�a� b
 and �g� � MSC�a� b
� size�g�
 � size�g
g

��



An example metric that suits our purpose is size � MSC�a� b
� hN�Ni de�ned as

size�h�� � t� a� �� � t� bi
 � hsize�t
� size���
 � size���
i

where for terms t�

size�t
 �

������
�����

size�r
 � size�s
 if t � rs or t � r � s

� if t is p �� q� �� or a free variable

� otherwise

and for substitutions ��

size��
 �
X

x�dom
��

size���x



For this de�nition of size� we de�ne � as

ha� bi � hc� di �� a � c or a � c and b � d

The �rst component minimizes the size of the generalization term� For example� in ����

MSCmax�FFa� FFb
 contains only g� because size�FFx
 is � while size�hFx
 is �� The second

component minimizes the size of the resulting transforms� This takes advantage of variables

which are bound to the same terms�

Example 	�� Consider the maximally speci�c condensed generalizations of FG�FH and GF�HF

in Figure ���� Because size�g�
 � h�� �i� size�g�
 � h�� �i� and size�g�
 � h�� �i� g� is chosen�

The norm of g� is the smallest of the three because of the two factored constants and the

repeated occurrences of the transforms F� � and �� F�

The size metric given here essentially counts the occurrences of constants� It ignores re	

structors and symbols such as � and � because they are artifacts of the representation and

counting them would skew the results� This works well on the above examples� but re�nements

are needed for ReFocus� Suppose the user represents numbers using a successor notation such

as 
� S 
� S S 
� and so on� Generalizing fact � �S S 
 � 

 and fact ��a �S 

 �Figure �����
 shows

the successor notation leads to anomalies� Since size�ga
 � h�� �i � h�� ��i� size�gb
� counting

each S leads to a generalization which re�ects similarities between the numbers S S 
 and S 
 but

ignores the common symbol fact� In ReFocus� this is addressed by converting terms representing

numbers into numeric constants such as � and � before applying generalization� The e�ect is to

re�ne size so that size�

 � size�S S 

 � �� This method can be applied to other sorts of data

structures such as lists and sets� Other possible re�nements on size include weighting matches

��



g� �

g�Fh � �


���
��

��
��

��
�

�� � FH�G�

HHHHHHHHHHH

�G � HF�

j
FG � FH GF � HF

g� �

fFg � f �Fg�

���
��

��
��

��
�

���G� ��H�

HHHHHHHHHHH

�G� ��H� ��

j
FG � FH GF � HF

g� �

fGg � fHg

���
��

��
��

��
�

�F� ��

HHHHHHHHHHH

��� F�

j
FG � FH GF � HF

Figure 	��� Maximally speci�c condensed generalizations of FG � FH and GF �HF�

ga �

f S 


��
�
�
�
�

���fact S � 

����
�
�
�
�
�

���fact a � �X
	���

R
��fact S S 
 � 

 ��fact a � S 



gb �

g fact x

��
�
�
�
�

����X � 

���� S S 
�
�
�
�
�
�

����X � S S 

���� a�

R
��fact S S 
 � 

 ��fact a � S 



Figure 	��� Alternative generalizations of fact�S S 

� 
 and fact a� S 
�

��



by their importance �such as preferring matches between function names over matches between

parameter names
 or preferring matches between functions with similar	sounding names�

The size metric is split into two components for e�ciency� While minimizing the size of

transforms subsumes maximizing the size of generalization terms� maximizing the size of terms

is much simpler� To minimize the size of transforms� we must have the complete substitutions

before looking for common transforms� minimizing transforms cannot be done incrementally�

In contrast� maximizing generalization terms can be done incrementally� Thus we split the

computation of MSCmax into two parts� maximizing the size of the source term and minimizing

the size of transforms� The next section presents computing maximally large generalization

terms� and the section which follows presents computing the associated transforms�

	���� Computing Maximally Large Generalizations

The naive way to compute MSCmax is to repeatedly apply the Factor�Constant step of Al	

gorithm 
��� until no pair of substitutions contains common symbols� Then size can be used

to �nd the set of largest generalization terms� and Merge applied to �nd the smallest set of

transforms� However� using Factor�Constant duplicates work because the order in which the

common symbols are chosen often has no e�ect on the result� This suggests using dynamic

programming and matching terms bottom	up� For each pair of terms� we �nd the match which

maximizes the number of matched symbols in the corresponding subterms� This means consid	

ering both matching the heads of the terms and matching each term against the other subterms�

By recording the results of each match and traversing the terms bottom	up� we avoid comparing

subterms more than once� This section describes such an algorithm�

We view generalization is as a form of tree matching� where each term is represented by a

typed tree�

De
nition 	�� A typed tree is a labeled� oriented tree with the restriction that if the node t

is labeled by H and H is a function symbol with arity n� then t has n children�

The following de�nition� inspired by �Pfe���� is used to denote all possible matches between

subtrees�

De
nition 	�� A partial permutation from n to m is an injective mapping � from S to

f� � � �mg where S is a k	element subset of f� � � �ng for k � min�n�m
�

Recall that a map f is injective if f�i
 � f�j
 implies i � j�

The goal is to �nd the maximally large embedded typed trees� where

De
nition 	�	 Given typed trees s and t� s is embedded in t� written

s � f�s�� � � � � sm
� g�t�� � � � � tn
 � t

��



if one of the following conditions hold�

i� s � ti for some i � f� � � �ng�

ii� f � g �implying m � n
 and si � ti for all i � f� � � �ng� or

iii� f denotes a free variable and� for some partial permutation � from n to m� si � t�
i� for

all i � dom ��

Given typed trees a and b� we wish to compute

De
nition 	��

gentrees�a� b
 � ft j t � a� t � b� and for any t� such that t� � a� t� � b�

size�t�
 � size�t
g

Before presenting an algorithm for computing the gentrees function� we present an algorithm

which determines the size of the maximally embedded tree� The algorithm to generate the trees

themselves is a modi�ed version of this algorithm�

Given two typed trees t� and t�� we index each node of t� and t� using a preorder traversal

with the indices of the roots set to �� Note that if node p is closer to the root than q� then p�s

index is smaller than q�s� The index of node p is denoted index�p
� and the node �and subtree


of t with index i is denoted t�i� The label of node p is denoted label�p
� When matching t��i

to t��j� there are four possibilities to consider�

�� matching t��i to some subtree of t��j�

�� matching t��j to some subtree of t��i�

�� matching some permutation of the subtrees of t��i to the subtrees of t��j� and

�� if label�t��i
 � label�t��j
� matching each subtree in parallel��

Let jtj be the number of nodes in tree t� To make these sets of possible matches explicit� we

de�ne two jt�j 	 jt�j matrices N and N � such that N contains the matches in items �%� and

N � contains the matches in item �� Thus Ni�j �N �
i�j represents the set of all possible matches

between nodes t��i and t��j�

De
nition 	�
 Let the children of t��i be pm and the children of t��j be qn �for m�n � �


where un is the sequence u�� u�� � � �un� Then Ni�j is the set containing the sets

� fhi� index�q
i j q � qmg

�Since t� and t� are typed trees� t��i and t��j contain the same number of subtrees if their labels are the
same


��



� fhindex�p
� ji j p � png

� fhindex�pk
� index�q�
k�
i j � is a partial permutation from n to m and k � dom �g

and

N �
i�j �

��
� fhi� ji� hindex�pk
� index�qk
i j � � a � ng if label�t��i
 � label�t��j


� otherwise

That is� N �
i�j contains the matches to be made if the roots are the same� and Ni�j is the set of

matches obtained by ignoring any possible match between the roots� Note that N �
i�j is a set of

node	index pairs while Ni�j is a set of sets of node	index pairs�

Using N and N �� we de�ne two jt�j 	 jt�j matrices M and M � such that Mi�j is the size of

the maximally embedded tree obtained from Ni�j and M �
i�j is the size obtained from N �

i�j � If P

is a set of node	index pairs� let M�P denote

X
hp�qi�P

Mp�q

Then M and M � are mutually de�ned as follows�

De
nition 	��

M �
i�j �

�
� if N �

i�j � �
� �M�
N �

i�j n hi�ji�
otherwise

Mi�j � maxfM �
i�j �M�P j P � Ni�jg

That is� if N �
i�j is non	empty� then M �

i�j is the result of matching the roots and corresponding

subtrees of t��i and t��j� In turn� Mi�j is the maximum of comparing the roots and comparing

all possible combinations of subtrees� Since N and N � give all ways of matching any pair of

subtrees�

M��� � jtj such that t � gentrees�a� b


That is� M��� is the size of each maximally large embedded typed tree� Since i� � i implies t�i�

is a subtree of t�i� Mi�j and M �
i�j depend only on Mi��j� for i

� � i and j� � j� Thus M and M �

can be computed by the nested loops

for i 
 n downto �

for j 
 m downto �

compute M �
i�j and Mi�j

In this way� dynamic programming is used to compute the size of the maximally large embedded

typed tree� �Note that N and N � are used only to simplify the description of the algorithm� an

implementation need not compute them explicitly�


��



In the worst case� computing M takes exponential time� If the maximum out	degree of any

node in either tree is k� then computing Mi�j involves � � jNi�jj � � � k � k � k! comparisons�

Thus if the size of both trees �terms
 is n� then the algorithm takes O�k!n�
 time�� Since

MSCmax may contain an exponential number of generalizations �cf� Example 
���
� there is no

algorithm which �nds the maximally large trees in polynomial time� However� k is normally a

small constant� so computing M can be thought of as taking quadratic time�

To �nd the maximally large embedded trees� we de�ne a matrix I � parallel to M � which

contains the combinations of node indices comprising the maximally large subtrees� That is�

De
nition 	���

Ii�j � fP � Ni�j jMi�j � M�P g � fN
�
i�j jMi�j � M �

i�jg

The �rst subset �based on N
 gives the matches between subtrees� The second subset �based on

N �
 gives the match between the roots and subtrees in parallel� In both subsets� M is used to

ensure that the corresponding matches are maximally large� Thus I��� is the root of a directed�

acyclic graph containing all possible combinations of indices used to make the maximally large

common tree�

Constructing the set of maximal trees is done by traversing all paths of this graph� choosing

some index	pair set P from Ii�j � and including the label of t��i �which is the same as label�t��j



if P contains the pair hi� ji� These trees can then be used to generate the terms by introducing

free variables at the appropriate places� However� computing the terms is not necessary because

I gives enough information to generate the sets of transformation rules� This is described further

in Section ������ But �rst� we illustrate computing M and I �

Example 	��� Let s � FG�a � F b
 and t � F F c� The indexed trees are

F�� F��

G�� F��

a�� F�� c��

b��

�This assumes that the k� possible permutations are compared in less than the O�k� k� operations needed to
generate all possible lists and sum up each individually
 There are a number of solutions� the implementation
presented in this thesis uses �Der��� to generate the permutations by swapping adjacent elements in an array

This gives an algorithm with O�k � k�� additions and comparisons


��



where the � i represent the node indices� and M is

t�s indices �

� � �

s�s � � � �

indices � � � �

� � � � �

� � � �


 � � �

For example�

Mh���i � maxf� �M�fh���ig�M�fh���ig�M�fh���igg � maxf� � �� �� �g� �

Matrix I is �where the indices are the same as in the previous table


� � �

� ffh�� �i� h�� �igg ffh�� �i� h�� �ig� fh�� �igg �

� ffh�� �ig� fh�� �ig� fh�� �igg ffh�� �igg �

� � � �

� ffh�� �i� h
� �ig� fh�� �igg ffh�� �i� h
� �igg �


 � � �

The maximally embedded tree is then composed of the node pairs fh�� �i� h�� �ig�

F�� F��

G�� F��

a�� F�� c��

b��

This represents the generalization term F x F y� Note that N��� includes fh�� �ig and fh�� �ig�

but I��� does not since these lead to maximally embedded trees of size ��

This section has described how to compute maximally large generalization terms� But since

I contains enough information to construct both the terms and substitutions� we can also use

it to compute MSCmax� However� ReFocus does not need the full generalizations� all it needs

is the resulting transform rules� Computing sets of transforms is described in the next section�

��



	���� Computing Sets of Transforms

Given I � we can compute the sets of transforms by constructing each maximally large generaliza	

tion term� �nding the appropriate substitutions� and pairing the bindings in the substitutions�

However� computing the maximally large generalization terms from I is complex� and second	

order matching takes exponential time in the worst case�� Because of this complexity and

expense� a much better algorithm can be obtained by computing the transforms directly from

I � This section presents such an algorithm�

Given terms a and b� let their indexed trees be a� and b� and let I be as speci�ed by

De�nition ����� Using depth	�rst search through the graph embedded in I �cf� �RND���
�

we can �nd all sets of consistent matches between the nodes of a� and b� by collecting those

node	index pairs hi� ji which occur in Ii�j � We denote such a set by matcheshi�ji�

De
nition 	��� Let P be such that P � Ii�j � Then

matcheshi�ji �
�

hp�qi�P n hi�ji

matcheshp�qi �

��
� fhi� jig if hi� ji � P

� otherwise

The set matcheshi�ji represents some set of matches between nodes with identical labels between

the trees a��i and b��j� Thus matchesh���i is a set of consistent matches between the labels of

a� and b�� Note that there is often more than one set satisfying the de�nition of matches� We

de�ne the set of all maximal matches as

De
nition 	���

M � fmatchesh���ig

Let P � M and let � be a bijection from P to a set of fresh ��rst	order
 variables� Each

hp� qi � P is used to make a transform rule by traversing the subtrees of a��p and b��q� including

all nodes in the rule except those with indices appearing in P � We give two functions to compute

the transforms� one to compute the left	hand side and another to compute the right	hand side�

These will then be combined to construct the transforms�

Algorithm 	��� If the children of a��i are k� � � � kn� then let

Li �

��
� �hi� ji if 
j�hi� ji � P

label�a��i
�Lk� � Lk� � � �Lkn
 otherwise

�For instance� there are n� matches between f�Fx� � Fx� � � �Fxn� and Fa� � Fa� � � � Fan


�




This gives the left	hand side of transform rules� Likewise� let the children of b��j be l� � � � ln�

and let

Rj �

��
� �hi� ji if 
i�hi� ji � P

label�b��j
�Rl� � Rl� � � �Rln
 otherwise

The di�erence between L and R is that L matches on the left components in P while R matches

on the right components� Given a pair of matching nodes hi� ji� we compute the transforms

from the children� Let the children of a��i be k� � � �kn and the children of b��j be l� � � � ln� Then

transformshi�ji �
�

x�f����ng

Lkx � Rlx

and the set of transforms associated with P is given by

fL� � R�g �
�

hi�ji�P

transformshi�ji

Finally� we remove all transforms of the form x� x from this set� These transforms arise when

all of the children of a��i and b��j match for some hi� ji � P or when the top two nodes match�

Example 	��� The set matchesh���i for Example ���� is

fh�� �ig �matchesh���i � fh�� �i h�� �ig

If �h�� �i � x and �h�� �i � y� then the computed transformation rules are

fL� � R�� L� � R�� L� � R�g � fx� x� G�a � y
� y� b� cg

The trivial rule x� x is removed�

Thus computing the set of transforms from I is done in three steps�

�� Find all sets of consistent matches between nodes corresponding to the maximally em	

bedded trees�

�� Construct transforms from each set�

�� Delete duplicate transforms�

These steps do not add to the time complexity of generalization� The �rst step is proportional

to the number of maximal generalizations� this can be exponential in the worst case� but it

is normally much less� In the second step� if we store the nodes in a vector to allow simple

tests for membership in P � generating the transforms for each P � M takes time proportional

��



to twice the number of symbols in a and b� Thus the dominant expense in generalization is

computing the maximally large generalization terms�

We next consider heuristics to increase the usefulness of the produced transforms�


�� Heuristics for Improving Transforms

While the previous section gives an e�cient algorithm for computing generalizations� we are

also concerned about usefulness� There are three issues to be addressed�

� reducing the number of alternative generalizations for use by replay�

� making function application explicit to improve generalization across distinct domains�

and

� incorporating contextual information in rules to make them more speci�c�

We consider each of these in turn� and conclude with a description of the complete generalization

algorithm used in ReFocus and a comparison between it and the algorithm in Chapter 
�

	���� Using Historical and User�supplied Information

While MSCmax�a� b
 is usually much smaller than MSC�a� b
� the following example shows that

it still may contain multiple elements�

Example 	��	 Let g� be the generalization

f cos g�a � b


�
















�F���

Q
Q
Q
Q
Q
Q
Q
Q

�G��� � cos ��a � b

������

s
F cos��a � b
 G�cos��a � b
 � cos ��a � b



Note this is based on matching � to �� We can also match � to �� giving g��

f cos g�a � b


�
















�F���

Q
Q
Q
Q
Q
Q
Q
Q

�G�cos��a � b
 � ��
	��� ��

s
F cos��a � b
 G�cos��a � b
 � cos ��a � b



The sizes of these are the same� h�� �i�

This section considers using semantic information to further reduce the number of alternative

generalizations�

��



In particular� we consider using user	supplied and historical information about name corre	

spondences� For example� g� might be preferred because of the user�s bias towards matching

� to � instead of �� Allowing the user to express this bias can be particularly helpful when

the user is using replay for derivation	by	analogy since then it is likely that the two problems

will have entirely di�erent sets of symbols� Alternatively� generalization g� might be preferred

because previous uses of replay were successful when generalization matched � to �� This sort

of bias can be helpful when using replay for change propagation� This section considers both

sorts of biases�

Historical and user	supplied information can take a number of forms� One is to store statis	

tical information about previous replays to guide future ones� When replay has been successful�

the system would store the correspondences that were used� During replay� generalization would

favor correspondences that have occurred more frequently� A second method is for the user to

supply a database specifying the semantic distance between symbols �cf� �MH���
� A third

approach is to ask the user to choose between alternatives�

Each of these methods has weaknesses� Asking the user to choose a best match makes

replay less automatic� possibly to the point where it is easier to repeat a derivation by hand� A

user	supplied database can become a maintenance problem in itself� though it might be worth	

while if a large number of derivations are in a speci�c domain� Storing statistical information

has the problem that matches that work well for one example may work poorly for another�

Experimentation is needed to determine if any one of these� or some combination� works best

in practice� this is left as future work�

Of these two biases� only historical information is used by ReFocus� As ReFocus generates

transforms� it stores them in the derivation tree so that they are available to later replay oper	

ations� When ReFocus needs to �nd the closest match between alternative terms� it applies the

stored transforms to each pair of terms before generalizing them� This increases the consistency

between generalizations in a very simple way� It is especially important in derivation	by	analogy�

as illustrated in Example ���� �page ���
� However� while this method works for many exam	

ples� it is not robust� It depends strongly on having constructed the right set of transforms in

previous replay operations� In particular� we have found that when generalization is used to

construct new transforms� applying transforms to the terms being generalized often makes the

new transforms less accurate� More work on incorporating historical information is needed�

	���� Representing Terms

A second usability issue to be addressed is ensuring that generalization produces useful results

when terms come from distinct domains� This section discusses making function application

explicit to improve replaying derivations when the symbols are very di�erent�

��



Unless the representation is changed� generalization will fail to produce useful results in

simple cases� For example� suppose the user has a proof for the associativity of append�

append�a � append�b � c

 � append�append�a � b
 � c


Then suppose the user changes the notation so that append is denoted using the in�x operator

���

u �� �v �� w
 � �u �� v
 ��w

Given the constraints for condensed generalizations� the generalization term for these two equa	

tions is trivial� x � y� The resulting generalization is not useful to ReFocus�

A solution is to use a notation that is commonly used in �rst	order generalization �Owe����

represent terms so that application is explicit� such as

���append � a ����append � b � c

 � ���append � ���append � a � b
 � c
 ����


and

����� � u � ����� � v � w

 � ����� � ����� � u � v
 � w
 ����


where �n�f � un
 represents applying f to un�
��� By treating �n operators as other constants

during generalization� we capture common structures and obtain transformation rules from one

namespace to another� For example� we can match append to �� and the various variable names

to the corresponding positions�

���f � x � ���f � y � z

 � ������f ����f � x � y
 � z



���
��

��
��

��
�

�append� a� b� c�

HHHHHHHHHHH

���� u� v�w�

j
����
 ����


Note that the multiple occurrences of f in the source term captures the consistent renaming of

append to ��� This happens because the �n notation allows introducing multiple variables in

cases where the de�nition of MSC allows only one variable�

�For clarity� the equality operator is shown using in�x notation
 In ReFocus� equality is treated specially so
that it always appears in the generalization


�As in Chapter �� we use xn to denote x� � x� � � �xn
 As mentioned earlier� we also use it to represent
x�� x�� � � � xn� the context makes it clear which is meant


��



One consequence of using the �n notation is that it treats function symbols as if they have

the type u � �� However� the following observation shows that using �n will not result in a

transform mapping a function symbol to a �rst	order term or vice versa�

Observation 	��� Given typed trees s and t with the respective children pm and qn� a trans	

form is computed from pi and qj if and only if label�s
 � label�t
 and i � j�

This follows directly from the de�nition of transforms in Algorithm ����� Since function symbols

appear only in the context of an �n operator in the above notation� both sides of a transform

r � r� must be function symbols or both must be �rst	order terms �in the object language
�

Using �n to make application allows generalization to obtain useful results when the in	

stance terms are from distinct domains� In e�ect� it counteracts the restriction in MSC against

redundant variables without introducing too many generalizations� An alternative solution is

to loosen the restriction on adjacent variables as discussed at the end of Section 
����� inves	

tigating this solution is left as future work� In the remainder of this chapter� we assume the

terms being generalized have been converted into the �n notation�

	���� Incorporating Context

By design� the transforms obtained from generalization contain as few symbols as possible� How	

ever� some cases require more information� Suppose a set of rules transform a to b� Transforms

which delete or rename symbols in a are relatively easy to use� but transforms which simply

introduce symbols in b are not because they can be applied almost anywhere� Furthermore�

symbols may occur in di�erent contexts in a� and di�erent transforms may apply to di�er	

ent occurrences of the symbols� Thus contextual information is often needed to disambiguate

transforms�

There are two parts to disambiguating transforms� identifying when a transform is ambigu	

ous and determining what contextual information to add� Let h�� � t � a� �� � t � bi be a

generalization of a and b� and let x� y � dom���
� One criteria for deciding that a transform

���x
 � ���x
 is ambiguous is if ���x
 is an identity or ���x
 � ���y
 for some y �� x� In

ReFocus� such transforms are disambiguated by incorporating the context of ���x
 from a� Let

a be a��n�H �an
� where ���x
 corresponds to ak � an� Then in place of the rule ���x
� ���x
�

we use

�n�H� z�� � � � � zk��� ���x
� � � � � zn
� �n�H� z�� � � � � zk��� ���x
� � � � � zn


where each zi is a free variable�

Example 	��
 Consider the generalization

���F � A
 �
���

���F � hA

����G � �X
	���� ���F � ���G � A



���



Instead of the transform x� ���G � x
� we use ���H � x
� ���H � ���G � x

�

A second reason for considering a transform to be ambiguous is if it is of the form �n�x�un
�

�n�x � vn
� where x is a variable� When the function applications are converted back to implicit

application� this gives the transform x�un
� x�vn
� Experience has shown this usually makes

the application of the rule ambiguous because it is rare that the arguments to all functions

in a derivation should be transformed in the same way� Furthermore� even if un � Q where

Q is a constant that only appears in limited contexts� the �exibility of second	order matching

means that xQ can match almost any subterm containing Q� not just those of the form FQ�

Our solution is to identify the function symbol which x abstracts and substitute the symbol for

each occurrence of x in the rule�

Example 	��� Consider the generalization

���F � �A � B

 �
����

f�F � �A �B


�����X � �
�� ���F � �B � A



Instead of the transform ���x�� x�� x�
� ���x�� x�� x�
� we use ���H� x�� x�
� ���H� x�� x�
�

These methods could be re�ned in a number of ways� Other criteria� such as comparing

new rules to previously generated rules� could be used to determine when a rule is ambiguous�

More contextual information could be included in rules to make them more speci�c� Also� type

information could used both to determine when a rule is ambiguous and how to disambiguate

it� Such re�nements are left as future work�

	���� Computing Transforms from Instance Terms

This section has presented several ways to improve the transform rules computed in Sec	

tions ����� and ������ These include reducing the number of generalizations by examining

information not available to generalization� changing representations for increased �exibility�

and adding information to rules to make them more speci�c to particular parts of speci�cations�

This section describes the complete generalization algorithm used in ReFocus and compares it

to the algorithm in Chapter 
�

The following sequence of steps is used in ReFocus to compute sets of transforms from

instance terms�

Algorithm 	���

�� Insert the �n notation into terms as described in Section ������

�� Convert the terms into labeled trees� indexing each node as described in Section ������

�� Compute M � M �� and I as described in Section ������

���



�� Compute the transform rules from the indices of the matched nodes as in Algorithm �����


� Delete rules of the form x� x�

�� Add contextual information to ambiguous rules�

�� Remove the �n operators from the transform rules�

�� Delete any duplicate transforms�

�� Find the smallest sets of transforms�

If more than one set of transforms remains� ReFocus assumes that they all are equally adequate

and selects one at random�

When generalization is used to pick the closest match �such as in Example 
�
�
� we make

the following changes�

� As described in Section ������ transforms from previous generalizations are applied to the

terms before step ��

� Step � is skipped so that contextual information does not skew the results�

� Step � is skipped so that structural matches�in the form of matching �n operators�are

considered when deciding which match is best�

It is useful to compare Algorithm ���� to 
���� Algorithm 
��� contains four steps� Delete�

Merge� Factor�Constant� and Factor�Restructor� Step �� computing I � corresponds to

repeatedly applying Factor�Constant until as many common symbols appear in the gener	

alization term as possible and then selecting the generalizations which maximize the size of

the generalization term� Step 
� removing trivial transforms� corresponds to applying Delete��

Since we assume all terms are �rst	order� there is no need to apply Factor�Restructor� Thus

Algorithm ���� corresponds to the rule application sequence

Factor�Constant�� Delete�� Merge�

where � denotes applying a rule until it cannot be applied any more� This is followed by

choosing generalizations which lead to minimally large transforms� Since Delete does not

a�ect Factor�Constant and Merge� the rules of Algorithm 
��� can be applied as

�Factor�Constant j Merge
�� Delete�

�The proof of correctness for Algorithm �
�� �in Section B
�� shows that when the terms are �rst�order�
Delete is essentially used to remove substitutions of the form f �� �
 These substitutions give rise to the
transforms x� x


���



where j denotes applying either of two rules� Thus for the terms we are interested in� the

primary di�erence between Algorithms ���� and 
��� is that Merge steps are not intermingled

with Factor�Constant steps�

The next section illustrates using Algorithm ���� in replay problems�


�� Examples

This section shows the use of second	order generalization in replay� All of these examples

have been tested using an implementation of ReFocus� The �rst example illustrates using

generalization to propagate changes in speci�cations� This emphasizes using transforms to

update terms� The second illustrates using generalization to support derivation	by	analogy�

This emphasizes using analogy to �nd which sets of alternatives provide the best match� The

third example shows some of the limitations of second	order generalization and suggests when

it is likely to fail�

In the following examples� we use standard �non	combinator
 notation for the terms in

Focus derivations and use combinator notation when considering generalization� To reduce the

number of parentheses� we assume that � associates to the right� While generalization is done

using the �n notation� we omit �n in the text for clarity� In each case� the full generalizations

including �n operators are given in �gures� As a result of removing the �n notation� some

generalizations appear to contain adjacent variables� these variables are not adjacent in the �n

versions�

As in Section 
��� we compare matches between generalizations by comparing norms as

de�ned in 
�
�� For jtj� we use size�t
 as de�ned in Section ����� with the modi�cation that

the size of a term representing a numeric value �such as 
� S
� etc�
 is �� The �n operators are

treated as constant function symbols and so are included in size�t
�

Example 	��� The predicate sorted tests if a list is sorted from low to high by checking that

each entry in the list smaller than all the remaining items in the list�

sorted�Nil
 � True
sorted�a�l
 � smaller�l� a
 � sorted�l


smaller�Nil� x
 � True
smaller�y�l� x
 � x � y � smaller�l� x


This predicate makes O�n�
 comparisons �where n is the size of the list
� Figure ��� outlines a

derivation of a linear	time version of the predicate sortedp� The key is proving the property

smaller�l� a
 fa � y � sortedp�y�l
g � True

���



Focus� sortedp�x
 � sorted�x


closed with program��
sortedp�Nil
 � True
sortedp�a�Nil
 � sortedp�Nil

sortedp�a�y�l�
 � a � y � sortedp�y�l�


cases from sorted�x
�

�� case x �� Nil
sortedp�Nil
 � True
sortedp�Nil
 � True

	� case x �� a�l
sortedp�a�l
 � smaller�l� a
 � sorted�l

sortedp�a�l
 � smaller�l� a
 � sortedp�l


cases from smaller�l� a
�

�� case l �� Nil
sortedp�a�Nil
 � True � sortedp�Nil

sortedp�a�Nil
 � sortedp�Nil


	� case l �� y�l�
sortedp�a�y�l�
 � a � y � smaller�l�� a
 � sortedp�y�l�

sortedp�a�y�l�
 � a � y � sortedp�y�l�


Prove� smaller�l� a
 fa � y � sortedp�y�l
g � True

closed with properties ��
smaller�l� a
 fsortedp�y�l
 � a � yg � True

cases from smaller�l� a
� � � �

cases from sortedp�y�l�
� � � �


� � � remainder of proof omitted � � � �

Figure 	��� Deriving a linear	time sorted predicate�

���



which states that if a is smaller than some y and the list y�l is sorted� then a is smaller than l�	

The property is used to remove the redundant test smaller in case ���

sortedp�a�y�l�
 � a � y � smaller�l�� a
 � sortedp�y�l�


to obtain

sortedp�a�y�l�
 � a � y � sortedp�y�l�


The proof of the property involves several expansions and is omitted for brevity�

Suppose that the user changes the speci�cation of sorted in two ways�

� The arguments to smaller are swapped so they are in a more natural order with the smaller

value as the �rst argument�

� The � function is generalized to allow sorting values from low to high or high to low by

specifying whether the list goes Up or Down�

The new speci�cation is

sorted�Nil� dir
 � True
sorted�a�l� dir
 � smaller�a� l� dir
 � sorted�l� dir


smaller�x� Nil� dir
 � True
smaller�x� y�l� dir
 � less�x� y� dir
 � smaller�x� l� dir


less�a� b� Up
 � a � b
less�a� b� Down
 � b � a

Note that the new versions of the functions must support the extra parameter specifying the

direction of the sort� When the user edits the node containing the function de�nitions� Focus

constructs analogical maps by comparing the speci�cations for each case� Generalization is

used to �nd the closest matches between cases� For example� matching

smaller���y � l
 � x
� &�� �x � y
 � smaller�l � x



against the new de�nition of smaller�

i� smaller�x � Nil � dir
� True

ii� smaller�x � ��y � l
 � dir
� &�less�x � y � dir
 � smaller�x � l � dir



gives the terms and transforms

�This property is expressed as an equality rather than a rewrite�rule since it cannot be oriented due to the
variable y in the condition
 It is applied by explicitly rewriting a subterm with smaller at the topmost position


��




i� w��smaller � x
� w�

fx����y � l
 � x�
� x��x� �Nil � dir
�&�� �x � y
 � smaller�l � x

� Trueg

ii� w��smaller � ��y � l
 � x
� &�w��x � y
 � w��smaller � l � x



fx��x� � x�
� x��x� � x� � dir
� � �x� � x�
� less�x� � x� � dir
g

For the detailed versions of the generalizations� see Figure ���� The norm of the �rst case is

��������
 � ��$� while the norm of the second case is just ��������
 � ��$� This di�erence

arises because virtually none of the constants are in the generalization term for the �rst case�

Thus we choose the second set of transforms� add inner contextual information� and remove the

�n operators to get

fsmaller�u� v
� smaller�v� u� dir
� u � v � less�u� v� dir
g

The transform for � introduces dir� while the transform for smaller both introduces dir and

reverses the arguments� Using similar methods to compare the de�nition of sorted adds the

transform

sorted�u
� sorted�u� dir


To derive the new version of sortedp� we use the focus speci�cation

sortedp�x� dir
 � sorted�x� dir


Comparing this speci�cation against the original gives the transform

sortedp�u
� sortedp�u� dir


Applying the transforms during replay gives the derivation in Figure ��
� During replay� ReFo	

cus uses these transforms in primarily two ways� First� they are used to update the terms in

the expand steps�

sorted�x
 � sorted�x� dir


smaller�l� a
 � smaller�a� l� dir


sortedp�y�l
 � sortedp�y�l� dir


sortedp�l
 � sortedp�l� dir


Note that the ability of second	order variables to abstract context is particularly important to

the transform

sortedp�u
� sortedp�u� dir


���



Generalization from Case ��

�� �smaller � ���� � y � l
 � x
 � ���& ����� �x � y
 � ���smaller � l � x



w� �smaller � x
 � w�

�� �smaller � x � Nil � dir 
 � True

Resulting transforms �indexed by the variable generating them
�

w� � ���x� � ���� � y � l
 � x�
 � ���x� � x� � Nil � dir

w� � ���& � ���� �x � y
 ����smaller � l � x

 � True

Generalization from Case ��

�� �smaller � ���� � y � l
 � x
����& � ���� � x � y
 � �� �smaller � l � x



w� �smaller � ���� � y � l
 � x
����& � w� �x � y
 � w� �smaller � l � x



�� �smaller � x � ���� � y � l
 � dir 
����& � ���less � x � y � dir 
 � �� �smaller � x � l � dir 



Resulting transforms�

w� � ���x� � x� � x�
 � ���x� � x� � x� � dir

w� � ���� �x� � x�
 � ���less � x� � x� � dir


Figure 	��� Detailed generalizations from matching smaller cases�

���



Focus� sortedp�x� dir
 � sorted�x� dir


closed with program��
sortedp�Nil� dir
 � True
sortedp�a�Nil� dir
 � sortedp�Nil� dir

sortedp�a�y�l�� dir
 � less�a� y� dir
 � sortedp�y�l�� dir


cases from sorted�x� dir
�

�� case x �� Nil
sortedp�Nil� dir
 � True
sortedp�Nil� dir
 � True

	� case x �� a�l
sortedp�a�l� dir
 � smaller�a� l� dir
 � sorted�l� dir

sortedp�a�l� dir
 � smaller�a� l� dir
 � sortedp�l� dir


cases from smaller�a� l� dir
�

�� case l �� Nil
sortedp�a�Nil� dir
 � True � sortedp�Nil� dir

sortedp�a�Nil� dir
 � sortedp�Nil� dir


	� case l �� y�l�
sortedp�a�y�l�� dir
 � less�a� y� dir
 � smaller�a� l�� dir
 � sortedp�y�l�� dir

sortedp�a�y�l�� dir
 � less�a� y� dir
 � sortedp�y�l�� dir


Prove� smaller�a� l� dir
 fless�a� y� dir
 � sortedp�y�l� dir
g � True

closed with properties ��
smaller�a� l� dir
 fsortedp�y�l� dir
 � less�a� y� dir
g � True

cases from smaller�a� l� dir
� � � �

cases from sortedp�y�l�� dir
� � � �


� � � remainder of proof omitted � � � �

Figure 	��� Derivation of modi�ed version of sortedp�

���



so that applying it to both sortedp�y�l
 and sortedp�l
 gives the correct results� Secondly� trans	

forms are used to update the property

smaller�l� a
 fa � y & sortedp�y�l
g � True

to

smaller�a� l� dir
 fless�a� y� dir
 & sortedp�y�l� dir
g � True

That is� they introduce the parameter dir in the appropriate places� This use of analogy is

especially important since without the property� the new version of sortedp would be no more

e�cient than sorted�

Note that �rst	order generalization would have failed in Example ����� even when using the

�n notation� While matching the old and new de�nitions of smaller would have worked �because

of the common occurrence of & at the topmost position
� the resulting transforms would be

fsmaller�y�l� x
� smaller�x� y�l� dir
� x � y&smaller�l� x
� less�x� y� dir
&smaller�l� x� dir
g

Likewise� the transform from the de�nition of sorted would be

sorted�x
� sorted�x� dir


and the transform from the focus speci�cation would be

sortedp�x
� sortedp�x� dir


These do match one of the expand terms� sorted�x
� but fail to match any of the other terms�

smaller�l� a
� sortedp�y�l
� and sortedp�l
� Likewise� the transforms have no e�ect on the property

smaller�l� a
 fa � y & sortedp�y�l
g � True

Thus the transforms from �rst	order generalization fail because they cannot abstract contexts�

Example ���� illustrated using generalization to transform terms� The next generalization

uses generalization to �nd the closest match between sets of terms and illustrates using replay

for derivation	by	analogy�

Example 	��� The function pow raises a number to an integral power�

pow�x� 

 � S�
�

pow�x� S�y

 � x � pow�x� y


���



We will use the derivation of a program for pow to guide deriving a program for revzip� a

function which joins two lists in reverse order by alternating between the lists�

revzip�Nil� Nil
 � Nil
revzip�a�as� Nil
 � revzip�as� Nil
 �� a�Nil
revzip�Nil� b�bs
 � revzip�Nil� bs
 �� b�Nil
revzip�a�as� b�bs
 � revzip�as� bs
 �� a�b�Nil

The function �� is an in�x version of append as described in Section ���� Figure ���a shows the

derivation of a program fastpow to compute pow� while Figure ���b shows the corresponding

derivation of rzip� a program to compute revzip� The primary improvement in both cases is that

the resulting program is tail�recursive� that is� it is in a form which allows it to be compiled

into a loop �ASS�
�� In the case of revzip� we also remove the calls to �� to avoid an extra pass

through the list�

The key steps in the derivation of fastpow are expanding pow� explicitly rewriting � in the

second case� and then choosing the right alternative� The derivation for rzip is similar� expand

revzip� explicitly rewrite ��� and then choose the appropriate result� Generalizing the focus

speci�cations�

fastpow�x� n� a
 � pow�x� n
 � a

and

rzip�u� v� a
 � revzip�u� v
�� a

gives the transforms

fx� u� n � v� fastpow � rzip� � � �� � pow � revzipg ����


This is used to update the expand script step� Similarly� � is transformed to �� in the rewrite

operation� The interesting part is handling the cases after expansion� Note that the new

derivation has more cases� and �� must be rewritten explicitly in cases �%�� so matching cases

is particularly important for this example�

Consider �nding the appropriate match for case ��

rzip�Nil � ��b � bs
 � a
 � ������revzip�Nil � bs
 � ��b � Nil

 � a


Applying the transforms in ����
 to cases � and � in the fastpow derivation gives the alterna	

tives

i� rzip�u � 
 � a
 � �� �S 
 � a


ii� rzip�u � S y � a
 � �� ��� �u � revzip�u � y

 � a


���



Focus� fastpow�x� n� a
 �
pow�x� n
 � a


closed with program��
fastpow�x� 
� a
 � a
fastpow�x� S�y
� a
 �

fastpow�x� y� x � a


cases from pow�x� n
�

�� case n �� 

fastpow�x� 
� a
 � S�
� � a
fastpow�x� 
� a
 � a

	� case n �� S�y

fastpow�x� S�y
� a
 �

x � pow�x� y
 � a
fastpow�x� S�y
� a
 �

fastpow�x� y� x � a


Focus� rzip�u� v� a
 � revzip�u� v
 �� a

closed with program��
rzip�Nil� Nil� a
 � a
rzip�a��as� Nil� a
 � rzip�as� Nil� a��a

rzip�Nil� b�bs� a
 � rzip�Nil� bs� b�a

rzip�a��as� b�bs� a
 � rzip�as� bs� a��b�a


cases from revzip�u� v
�

�� case v �� Nil � u �� Nil
rzip�Nil� Nil� a
 � Nil �� a
rzip�Nil� Nil� a
 � a

	� case v �� Nil � u �� a��as
rzip�a��as� Nil� a
 �

revzip�as� Nil
 �� a��Nil �� a
rzip�a��as� Nil� a
 � rzip�as� Nil� a��a


�� case v �� b�bs � u �� Nil
rzip�Nil� b�bs� a
 �

revzip�Nil� bs
 �� b�Nil �� a
rzip�Nil� b�bs� a
 � rzip�Nil� bs� b�a


�� case v �� b�bs � u �� a��as
rzip�a��as� b�bs� a
 �

revzip�as� bs
 �� a��b�Nil �� a
rzip�a��as� b�bs� a
 � rzip�as� bs� a��b�a


a� The derivation of fastpow� b� The derivation of rzip�

Figure 	�	� Using replay for derivation	by	analogy�
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Applying Algorithm ���� results in the terms and transforms

i� rzip�w� � w� � a
 � �� �w� � a


fNil� u� ��b � bs
� 
� �� �revzip�Nil � bs
 � ��b � Nil

� S 
g

ii� rzip�w� � w� � a
 � �� �w���� � revzip�w� �w�

 � a


fNil� u� ��b � bs
� S y� x��x� � ��b � Nil

� x��u � x�
� bs� yg

For the detailed versions of the generalizations� see Figure ���� The norm of �i
 is ���������
�


�$� while the norm of �ii
 is ���������
 � �
$� This leads ReFocus to apply the script from

the second case of Figure ���a� as desired� Second	order generalization worked because it noted

that revzip occurred in both equations� that �� occurred twice in both equations� and that Nil

was matched to u twice� The other cases are similar� except that the �rst case of Figure ���a is

used for the �rst case of Figure ���b�

The next step for case � is to transform the explicit rewrite in case � of Figure ���a to

rewrite���
 and then execute the step to get the alternatives

i� rzip�Nil � ��b � bs
 � a
 � rzip�Nil � bs � ��b � a



ii� rzip�Nil � ��b � bs
 � a
 � ���rzip�Nil � bs � ��b � Nil

 � a


Applying the transforms from the focus speci�cation to the original result�

fastpow�x � S y � a
 � fastpow�x � y � ��x � a



gives


rzip�u � Nil � a
 � rzip�u � y � ���u � a



Algorithm ���� gives

i� rzip�w� � w� � a
 � rzip�w� � w� �w��w� � a



fu� Nil� Nil� ��b � bs
� y � bs� �� � �� u� bg

ii� rzip�w� � w� � a
 � w��rzip�w� � w� � w��w� � w	




fu� Nil� Nil� ��b � bs
� x� � �� �x� � a
� y� bs� �� � �� u� b� a� Nilg

For the detailed versions of the generalizations� see Figure ���� The norm of �i
 is ����� � ��$�

while the norm of �ii
 is ����� � 
�$� leading ReFocus to choose �i
 as desired� The primary

di�erence between the two sets of transforms is that x� � �� �x� � a
 appeared in the second

�The rule Sy � Nil comes from comparing the initial states of the old and new cases after the expand step


���



Generalizing the left	hand side of Case � against Case ��

���rzip � Nil � ���� � b � bs
 � a


���rzip � w� � w� � a


���rzip � u � 
 � a


Generalizing the right	hand side of Case � against Case ��

����� � ����� ����revzip �Nil � bs
 ����� � b �Nil

 � a


����� � w� � a


����� � ���S � 

 � a


Resulting transforms�

w� � Nil � u
w� � ���� � b � bs
 � 

w� � ����� � ���revzip � Nil � bs
 � ���� � b � Nil

 � ���S � 



Generalizing the left	hand side of Case � against Case �� nearly identical to Case ��

Generalizing the right	hand side of Case � against Case ��

����� � �� ��� � ���revzip � Nil � bs 
 � ���� � b � Nil
 
 � a


����� � w� ��� ����revzip � w� � w� 

 � a


����� � �� ��� � u � ���revzip � u � y 

 � a


Resulting transforms�

w� � Nil � u
w� � ���� � b � bs
 � ���S � y

w� � ���x� � x� � ���� � b � Nil

 � ���x� � u � x�

w� � bs � y

Figure 	��� Detailed generalizations from matching case � against cases � and � of fastpow�

���



Generalizing with case �i
�

���rzip � u � Nil � a
 � ���rzip � u � y � ��� �� � u � a



���rzip � w� � w� � a
 � ���rzip � w� � w� � ��� w� � w� � a



���rzip � Nil � ���� � b � bs
 � a
 � ���rzip � Nil � bs � ��� � � b � a



Resulting transforms�

fu� Nil� Nil� ���� � b � bs
� y� bs� �� � �� u � bg

Generalizing with case �ii
�

���rzip � u � Nil � a
����rzip � u � y ���� �� � u � a 



���rzip � w� � w� � a
� w� ����rzip � w� � w� � ��� w� � w� � w	 




���rzip � Nil � ���� � b � bs
 � a
� ����� ����rzip � Nil � bs � ��� � � b � Nil 

 � a 


Resulting transforms�

fu� Nil� Nil� ���� � b � bs
� x� � ����� � x� � a
� y� bs� �� � �� u� b� a� Nilg

Figure 	�
� Detailed generalizations from matching rewrite results for rzip�

���



one� so second	order generalization was successful because rzip was at the head of the term in

�i
 and embedded in a context in �ii
� Again� the other cases are similar�

Finally� Refocus must test the new derivation for acceptability� Consider case �� Trans	

forming the �nal state of the original derivation gives

rzip�u� Nil� a
 � rzip�u� y� u �� a


This is close to the actual �nal result�

rzip�Nil� b�y� a
 � rzip�Nil� y� b�a


in that it is tail	recursive and re�ects the change from numbers to lists� However� it is not

an exact match� illustrating that transformations are not very e�ective at predicting the �nal

form of the program� Furthermore� since the same case is used to guide the derivation of three

di�erent cases of rzip� and since each case involves signi�cant processing� it is not clear that any

given set of transforms could generate exact matches for all three cases� This issue motivates

the acceptance tests described in Chapter ��

While second	order generalization is very �exible� it does have limitations� as shown by the

following example�

Example 	��� The function rev reverses a list�

rev�Nil
 � Nil

rev�a�x
 � rev�x
 �� a�Nil

where �� again appends two lists� Focusing on the equation

aprev�l� a
 � rev�l
 �� a

expanding rev� rewriting �� in the second case� and selecting the desired result gives the deriva	

tion of a tail	recursive program for reversing a list� This is shown in Figure ���� The structure

of this derivation is the same as that for fastpow in Figure ���a� Intuitively� we should be able

to use the derivation of aprev to guide the derivation of fastpow� However� ReFocus fails on this

example� After rewriting � in the new derivation� we obtain the alternatives

i� fastpow�x � S�y
 � a
 � ��fastpow�x � y � a
 � x


ii� fastpow�x � S�y
 � a
 � ��fastpow�x � y � x
 � a


iii� fastpow�x � S�y
 � a
 � fastpow�x � y � ��x � a



��




Focus� aprev�l� a
 � rev�l
 �� a

closed with program��
aprev�Nil� a
 � a
aprev�a��x� a
 � aprev�x� a��a


cases from rev�l
�

�� case l �� Nil
aprev�Nil� a
 � Nil �� a
aprev�Nil� a
 � a

	� case l �� a��x
aprev�a��x� a
 � rev�x
 �� a��Nil �� a
aprev�a��x� a
 � aprev�x� a��a


Figure 	��� Derivation of aprev�

Applying the transforms from comparing the focus speci�cations in Figures ���a and ����

faprev�l� x�
� fastpow�x� n� x�
� �� � �� rev�l
� pow�x� n
g

to

aprev�a��x� a
 � aprev�x� a��a


has no e�ect� Thus Refocus attempts to match the new results �cases i%iii
 against

aprev���a� � x
 � a
 � aprev�x � ��a� � a



The corresponding generalization terms and transforms are

i� w��x � a
 � w��w��x
 �w�


faprev���a� � x�
 � x�
� fastpow�x� � S�y
 � x�
� aprev� ��

x� � fastpow�x� � y � a
� ��a� � a
� ig

ii� w��x � a
 � w��w��x
 �w��a



faprev���a� � x�
 � x�
� fastpow�x� � S�y
 � x�
� aprev� ��

x� � fastpow�x� � y � x
� ��a� � x�
� x�g

iii� w��x � a
 � w��x � w��w� � a



faprev���a� � x�
 � x�
� fastpow�x� � S�y
 � x�
�

aprev�x� � x�
� fastpow�x� � y � x�
� �� �� a�� xg

���



For the detailed versions of the generalizations� see Figure ����� ReFocus should select case �iii


since it is the tail	recursive version� Case �i
 is eliminated because its norm is ��$ while the

norm of case �ii
 is ����� � 
�$� However� the norm of �iii
 is also 
�$� so generalization does

not distinguish between matching against cases �ii
 and �iii
� The problem is that the transforms

obtained from comparing the focus speci�cations are too speci�c� so applying them to the

original result has no e�ect� In all three cases� only x� a� and �� appear in the generalization

term� with a second occurrence of a di�erentiating between case �i
 and cases �ii
 and �iii
� This

means the transforms contain nearly all the symbols from the instance terms� In Example �����

ReFocus recognized the tail	recursive form by �nding a trivial context for the recursive call in

the selected case� But in this example� aprev was not transformed to fastpow� so ReFocus could

not form the appropriate contexts and select the right result� For the same reasons� �rst	order

generalization also fails�

However� the failure in Example ���� should not be surprising� Because pow has two ar	

guments while rev has only one� the terms in the two derivations contain many structural

di�erences� Furthermore� the two domains are very di�erent� so there are no shared function

names� Only two symbols were shared� �� and a� and these were almost incidental� When the

terms in two derivations do not share a common structure and use distinct sets of symbols�

there is no information for syntactic analogy to transfer� Semantic information is needed for

such examples�


�� Conclusion

This chapter addressed various problems with applying second	order generalization to replay�

The key issues were restricting the sets of generalizations and computing generalizations e�	

ciently� These are addressed by choosing generalizations with maximally large source terms and

using dynamic programming to compute such generalizations e�ciently� However� computing

generalizations e�ciently is not enough� the computed generalizations must be useful� This

was addressed by heuristics to restrict the candidate generalizations further� improve gener	

alization across distinct domains� and add contextual information� The re�ned de�nition of

generalization was shown to be useful by applying it to simple replay problems�

The examples show how generalization is used by ReFocus to transfer information between

derivations� Unless the user changes both the symbols and the structure of terms� second	order

generalization can be very successful in selecting between alternatives and transforming small

terms� However� transforming large terms is less likely to produce correct results� as shown by

the acceptance test at the end of Example ����� In general� second	order generalization is best at

selecting the closest match between alternatives� Transformations of large terms often produce

incorrect results because of the large number of details involved� However� transforming large

���



i�

���fastpow � x � ���S � y
 � a
 � ��� aprev � x � ���� � a� � a
 


w� �x � a
 � ��� w� � w� x � w� 


���aprev � ���� � a� � x
 � a
 � ��� � � ���fastpow � x � y � a
 � x 


f���aprev ����� � a� � x�
 � x�
� ���fastpow � x� � ���S � y
 � x�
�
aprev� �� x� � ���fastpow � x� � y � a
����� � a� � a
� ig

ii�

���fastpow � x � ���S � y
 � a
 � ��� aprev � x � ���� � a� � a



w� �x � a
 � ��� w� � w� x � w� a


���aprev � ���� � a� � x
 � a
 � ��� � � ���fastpow � x � y � x
 � a 


f���aprev ����� � a� � x�
 � x�
� ���fastpow � x� � ���S � y
 � x�
�
aprev� �� x� � ���fastpow � x� � y � i
����� � a� � x�
� x�g

iii�

���fastpow � x � ���S � y
 � a
 � ���aprev � x � ��� � � a� � a



w� �x � a
 � w� �x � ��� w� � w� � a



���aprev � ���� � a� � x
 � a
 � ���fastpow � x � y � ��� � � x � a



f���aprev ����� � a� � x�
 � x�
� ���fastpow � x� � ���S � y
 � x�
�
���aprev � x� � x�
� ���fastpow � x� � y � x�
� �� �� a�� xg

Figure 	���� Detailed generalizations from matching rewrite results for fastpow�
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terms is usually useful only when comparing the results of derivations� Chapter � presents an

alternative� and more robust� method for comparing results�

���



Chapter �

Acceptance Testing

Chapters �� 
� and � describe transforming derivation sequences to apply them to new speci�	

cations� This allows them to be replayed with minimal intervention from the user� For theorem

proving� reexecuting derivations is su�cient� But for synthesizing programs� replay must do

more� A program derivation is developed for a purpose� and replaying it should ful�ll the same

purpose� If it does not� the user needs to know so that the derivation can be repaired� But

expecting the user to recheck the results manually is not reasonable� Maintenance is a constant

activity which starts as soon as the initial speci�cation is written� so derivations are replayed

often� Thus replay must automatically test the results to verify that they are acceptable�

The obvious method is to compare the old and new programs and warn the user if they are

di�erent� But a simple comparison is too strict� small di�erences� such as renaming variables

and reordering arguments� would lead to warnings� Using analogical reasoning to propagate

di�erences might improve the test� but examples such as ���� show that applying transforms

is unlikely to produce an exact match� A more lenient test is needed� However� there must be

a balance� If the test is too lenient� then the user cannot rely on replay to catch errors� If the

test is too conservative� then replay will produce too many false warnings� In either case� the

user spends too much time reexamining results�

There are other shortcomings with requiring an exact match between derived programs� One

problem is that rewrite steps often make only small gains in e�ciency� and failing to repeat

such steps should be ignored� For example� rewriting �S�

 � a� to �a� in case � of the fastpow

derivation �Example ����
 gives only a constant	time improvement� Failing to repeat such a

step is not signi�cant� Another problem is that comparing results provides little assistance in

repairing derivations� It can say that a result is not acceptable� but it cannot indicate what

is wrong� However� the fundamental problem with requiring an exact match is that it ignores

the goals of constructing derivations� Abstractly� replay fails exactly when the new derivation

does not ful�ll the goals of the original derivation� An ideal test would identify the goals of

���



the original derivation and verify that the new derivation satis�es those goals� Unfortunately�

capturing information about goals is di�cult�

This chapter describes a heuristic for capturing information about goals based on term

orderings� These are well	founded orderings used to orient rules in rewrite systems� such as

Focus� so that applying a rule always decreases the size of a term� Such orderings are used to

show that rewriting terminates �DJ��� and that inductive proofs based on rewriting are sound

�Red��b� BRH���� But because term orderings indicate when a program derivation is �nished�

they can also be used to capture information about goals�

The di�erence between a speci�cation and a program is that a program is orientable while

a speci�cation is not� Initially� a function is de�ned by an unoriented equation� A derivation

turns this equation into a set of oriented rules� This results in an executable program� Thus the

steps in a derivation make progress by removing subterms which block an equation from being

oriented� These subterms are called precedence violations� This chapter shows that precedence

violations can be used to measure progress during replay and provide a basis for capturing

information about goals� This allows ReFocus to check progress without requiring the user to

supply extra information�

Section ��� presents the term ordering used in Focus� This ordering is used to determine

which parts of a speci�cation block orientation� Section ��� presents an algorithm for computing

precedence violations� Finally� Section ��� describes using violations in replay and gives exam	

ples� While this chapter describes using precedence violations in ReFocus� these techniques can

be applied to any transformational implementation system based on oriented rewriting�

��� Ordering Terms

There are many methods for ordering terms in rewrite systems� see �Der��� DJ��� for surveys�

This section describes the method used in Focus� the lexicographic recursive path ordering

� �Der��� KL����� It combines a relation over functions� multiset orderings� lexicographic

orderings� and the subterm relationship�

We use the following notation in this chapter� The set fi� i� �� � � � � jg is denoted by i��j�

The sequence hx�� � � � � xni is denoted by xn� The symbol � denotes a partial order� that is�

a transitive� irre�exive relation� We say that a partial order � is well�founded if there is no

in�nite descending sequence x� � x� � � � � � The symbol �� denotes an equivalence relation�

The symbol � denotes the preorder de�ned by x � y �� x � y or x �� y� Given a partial

order �� �� denotes its multiset� extension and �� its lexicographic extension� If � denotes

�This ordering is also known� in a slightly generalized form� as the recursive path ordering with status�
cf� �Ste���


�A multiset is a set in which an element can appear multiple times


���



multiset union� then �� is de�ned by

X � fxg �� Y � fy�� � � � � ykg �� x � yi for all i and either X � Y or X �� Y

The lexicographic extension� ��� is de�ned by

hu�� � � � � uni �
� hv�� � � � � vmi

if for some k in ���n�

u� �� v�� � � � � uk�� �� vk��� and uk � vk

For terms� we use the symbols �� �� �� ��� and ���

De
nition ��� �Lexicographic Recursive Path Ordering� Let

� � be a well	founded partial ordering on function symbols�

� �� be an equivalence relation on function symbols� and

� f�u�� � � � � un
 � g�v�� � � � � vn
 be the equivalence relation over terms de�ned by f �� g and

ui � vi for each i�

Then f�u�� � � � � un
 � u � v � g�v�� � � � � vm
 if and only if at least one of the following is true�

� ui � v for some i in ���n�

� f � g and u � vi for all i in ���m�

� f �� g� both are lexicographically ordered� n � m� hu�� � � � � uni �� hv�� � � � � vni� and u � vi

for all i in ���n� or

� f �� g� neither is lexicographically ordered� and fu�� � � � � ung �� fv�� � � � � vmg�

In Focus� the user speci�es � and �� by explicit precedence declarations� All builtin functions

such as if are assumed to be smaller than functions de�ned by the user� In turn� all constructor

symbols such as S and Nil are assumed to be smaller than all functions� The user also speci�es

which functions are ordered lexicographically and the order in which the arguments are to be

compared�� by default� there is no lexicographic ordering on a function�

Examples ���

�For simplicity� however� we assume in this chapter that if a function is lexicographically ordered� it is ordered
from left to right


���



�� If � � fastpow� then

pow�x� n
 � a � fastpow�x� n� a


�� If instead fastpow � � and if fastpow is lexicographically ordered from left to right� then

fastpow�x� S�y
� a
� fastpow�x� y� x � a


because S�y
 � y�

�� If fastpow �� myfun and neither is ordered lexicographically� then

fastpow�S�c
� S�b
� a
 � myfun�b� c� b� a


by ���

De�nition ��� does not restrict � beyond requiring that it be a well	founded partial ordering�

But program derivation places other constraints on �� Since the goal of program derivation is

to improve e�ciency� � should be speci�ed so that if s � t� rewriting s to t improves e�ciency�

However� there is no absolute notion of e�ciency� Usually� the user is concerned with reducing

time and space� but the combination that is appropriate to a particular problem and how to

achieve it must be decided by the user� This leads to viewing � as a preference relation� That

is� if g � f� then the user has declared that terms involving f are to be preferred over those

containing g� The operational meaning is that Focus should replace g by f whenever it can do

so by rewriting� assuming that f is preferred because it improves e�ciency in some way� Thus

we can also view � as a preference relation�

Consider Example ����� Making fastpow smaller than pow and � allows orienting the induc	

tive hypothesis for fastpow as

pow�x� n
 � a� fastpow�x� n� a


so that occurrences of pow and � are rewritten to fastpow� This is the key to introducing

tail	recursion in the program for fastpow� Furthermore� if we prove that

pow�x� n
 � fastpow�x� n� 



then pow � fastpow leads to orienting the equation as

pow�x� n
� fastpow�x� n� 



���



Thus preferring fastpow to pow leads to a rewrite rule which improves the e�ciency of programs

by replacing calls to pow by calls to fastpow�

Viewing � as a preference relation means the term ordering forms a useful basis for capturing

information about goals� For example� if f � g � h and we have the equation

g�u
 � f�v
 ����


then applying the rewrite step

f�v
� h�v
 ����


makes progress by replacing f by h to obtain an equation� g�u
 � h�v
� which is orientable at

the topmost position� More abstractly� we prefer expressions containing h over expressions con	

taining f� so applying ����
 brings us closer to the goal of �nding the preferred implementation

for ����
� Thus we say that the goal of applying f�v
 � h�v
 was to remove the precedence

violation g �� f� In this way� � captures information about goals� We formalize this in the next

section�

��� Precedence Violations

Informally� a pair of terms is a precedence violation if it blocks an equation from being ori	

ented� This section formalizes this by giving a set of functions which compute violations for

a pair of terms s and t� These functions loosely parallel �� Each condition for � depends on

the relationship between the topmost symbols� if the topmost symbols of s and t match the

relationship but do not satisfy the corresponding conditions� then the unsatis�ed conditions are

used to generate information about violations�

There is no absolute de�nition of precedence violations since it is not always clear why

an equation cannot be oriented� For example� suppose f � g �� g� � h where g and g� are

lexicographically oriented from left to right� and consider the equation

g�S�a
� f�b

 � g��h�a� a
� f�b

 ����


It appears this cannot be oriented left	to	right because �� would require S�a
 � h�a� a
� Sup	

porting this is the observation that if we have the rule h�a� a
� a� then rewriting gives

g�S�a
� f�b

 � g��a� f�b



���



and this is orientable because S�a
 � a and g�S�a
� f�b

 � f�b
� But if we have the rule

g��h�x� x
� y
� h�x� y
 instead� then rewriting gives

g�S�a
� f�b

 � h�a� f�b



which is orientable because g � h� This suggests that it would be more accurate to say that

����
 cannot be oriented because g �� g�� Thus it is not always clear which subterms block an

equation from being oriented�

However� it is not necessary to identify the precise set of subterms which need to be removed

to allow orienting an equation� Using precedence violations to test for acceptability is a heuristic�

so any inaccuracies can be ignored by the user� The important criteria is that if an equation

cannot be oriented� then the set of precedence violations should be non	empty�

De�nitions ���� ���� and ��
 give mutually recursive functions computing precedence viola	

tions� The output is a multiset of pairs� fxi �� yig� such that xi and yi are either subterms

or function symbols and xi is not larger than yi� Since a derivation might make progress by

removing a precedence violation that is embedded within the context of another violation� the

output includes violations from subterms even when they are embedded within other violations�

The de�nition of the primary function for computing precedence violations� PV � is given in

Figure ���� Precedence violations for lexicographically ordered functions are de�ned as

De
nition ��� Assume f� g with arity n are lexicographically ordered� f �� g� and f�un
 ��

g�vn
� and let k be the smallest number such that either k � n or u� � v�� � � � � uk�� � vk��� and

uk �� vk� By assumption� at least one of the following is false� k � n� uk � vk� f�un
 � vk���

� � � � or f�un
 � vn� Then

PV 	lex�f�un
� g�vn

 �

fhuni �� hvnig if k � n

PV �uk� vk
 if k � n and uk �� vk

� otherwise

Note that the De�nition ��� suggests that

�
i� k����n

PV �f�un
� vi


should be included in the multiset of violations in the second and third cases� However� these

are already included as part of ' in the de�nition of PV � so including them in PV 	lex would

��




De
nition ��� If f�un
 � g�vm
�

PV �f�un
� g�vm

 � �

otherwise�

PV �f�un
� g�vm

 �

ff �� g�vm
g if f is a variable

ff�un
 �� gg
if f is a function� g is a variable�

and g �� FV�f�un



ff �� g�vm
g if f �� g and n � �

PV 	lex�f�un
� g�vm

�'
if f �� g� n � m� and both are

lexicographically ordered

PV 	multi�fung� fvmg
 �'
if f �� g and neither is

lexicographically ordered

' if f � g

ff �� gg �' otherwise

where
' �

�
i� ���n

PV �f�un
� vi


Figure ���� De�nition of PV �

be redundant� Thus PV 	lex�s� t
 is empty unless all of the arguments are equivalent or the �rst

k � � arguments are equivalent and uk �� vk�

For multisets� we �rst delete all subterms that are shared by both expressions and then

examine the remaining subterms to �nd those pairs which are inconsistent with �� As a special

case� we use the original sets if they are equal� This is to handle equations such as f�u
 � g�u


where f �� g�

De
nition ��� Assume U and V are multisets of terms such that U ��� V � Then if U � � U n V

and V � � V n U � we de�ne

PV 	multi �U� V 
 �

fU �� V g if U � � V � � �

fU � �� fv � V � j �u � U �� u �� vgg otherwise

���



This �rst example is based on the derivation of �atten in Figure ��� �Section ���
�

Example ��	 In the derivation for �atten� case analysis gives the equation

�atten�Tree�l� r
� a
 � append�append�fringe�l
� fringe�r

� a


After executing simplify�� �which has no e�ect on the equation
� Focus computes the prece	

dence violations and stores them in the script� Assume append � �atten� fringe � �atten� and

�atten is lexicographically ordered from left to right� Then the precedence violations for this

equation are

PV ��atten�Tree�l� r
� a
� append�append�fringe�l
� fringe�r

� a



� f�atten �� appendg � PV ��atten�Tree�l� r
� a
� append�fringe�l
� fringe�r




� f�atten �� append� �atten �� appendg � PV ��atten�Tree�l� r
� a
� fringe�l



�PV ��atten�Tree�l� r
� a
� fringe�r



� f�atten �� append� �atten �� append� �atten �� fringe� �atten �� fringeg

Rewriting append gives the �nal form of the recursive case�

�atten�Tree�l� r
� a
 � �atten�l� �atten�r� a



Because �atten is ordered lexicographically� there are no precedence violations for this equation�

This re�ects the goal that the new program �atten not depend on the speci�cation of fringe and

not contain any calls to append� All of this information is captured in the script for the second

case of the �atten derivation�

simplify�

f�atten �� append� �atten �� append�
�atten �� fringe� �atten �� fringeg

rewrite�append


The next set of examples illustrates PV 	lex and PV 	multi�

Examples ��� Assume the ordering on function symbols includes pow � � � fastpow� Then

we have the following�

�� PV �fastpow�x� n� a
� pow�x� n
 � a
 � ffastpow �� �� fastpow �� powg

�� If fastpow is not lexicographically ordered� then

PV �fastpow�x� S�y
� a
� fastpow�x� y� x � a



���



� PV 	multi �fx� S�y
� ag� fx� y� x � ag


�PV �fastpow�x� S�y
� a
� x � a


� ffS�y
� ag �� fx � agg � ffastpow �� �g

�� If f � g �� g� � h and g and g� are lexicographically ordered� then

PV �g�S�a
� h�b

� g��f�a� a
� h�b




� PV 	lex�g�S�a
� h�b

� g��f�a� a
� h�b




�PV �g�S�a
� h�b

� f�a� a

 � PV �g�S�a
� h�b

� h�b



� PV �S�a
� f�a� a

� � � �

� fS �� fg

Finally� we apply precedence violations to the fastpow derivation�

Example ��
 Consider the derivation of fastpow in Figure ���a� To orient the inductive

hypothesis�

pow�x� n
 � a� fastpow�x� n� a
 ����


we must have pow � � � fastpow�� Because the �nal result is tail	recursive� we also specify

that fastpow is lexicographically ordered�

The initial state of case � is

fastpow�x� S�y
� a
 � x � pow�x� y
 � a

This equation has the violations

ffastpow �� �� fastpow �� �� fastpow �� powg

Rewriting � and picking the best choice gives

fastpow�x� S�y
� a
 � fastpow�x� y� x � a
 ���



The remaining precedence violations for this equation are

PV �fastpow�x� S�y
� a
� fastpow�x� y� x � a



� PV 	lex�fastpow�x� S�y
� a
� fastpow�x� y� x � a



�The ordering pow � � is required by the de�nition of pow


���



�PV �fastpow�x� S�y
� a
� x � a


� � � ffastpow �� �g

In this case� rewriting achieved the goal of removing all occurrences of pow and one occurrence

of ��

The remaining violation in Example ��� re�ects an inadequacy in the lexicographic recursive

path ordering� This is considered in the next section which discusses applying precedence

violations to replay�

��� Using Violations in Replay

Because the term ordering is a user	speci�ed preference relation� it can be used to determine

the goals of a derivation� This section considers using information from precedence violations

to infer goals and applying that information to a new problem to test for acceptability�

After Focus applies an operation� it computes the precedence violations for the resulting

equation and stores them in the script	entry for the operation� After reapplying operations

during replay� ReFocus veri�es that the new set of precedence violations is a subset of the

old violations� To allow for di�erences between speci�cations� ReFocus applies the visible

transforms to the old violations before comparing sets� At the end of replaying a focus node�

if the remaining violations are still not a subset of the original violations� ReFocus warns the

user that the �nal results may not be acceptable and notes which operation was the �rst to

fail to remove the necessary violations� The user can then examine the results more closely to

determine why replay failed�

Note that this method allows the results of a derivation to contain precedence violations�

Ideally� programs would contain no violations� However� it is not possible to require that all

violations be resolved� One reason is that the user may not want to take the time to ensure that

every rule can be oriented� This may result in a system that does not always terminate� but

Focus allows such unsafe practices for convenience� But more importantly� the lexicographic

recursive path ordering� as any ordering� is incomplete� That is� there are sets of rewrite rules

which terminate but not for any de�nition of �� Ordering terms is undecidable �cf� �DJ���
�

so requiring that a derivation remove all precedence violations is too restrictive because it does

not allow for termination proofs constructed by the user outside of the scope of Focus�

This following examples illustrate using precedence violations to check for acceptability�

First� we continue Example ��� �p� ��
�

���



Example ��� In Example ���� the derivation of �atten is used to guide the derivation for a

program squash� Case analysis results in the equation

squash�Node�l� i� r
� a
 � append�append�nodes�l
� i�nodes�r

� a
 ����


Assuming append � squash� nodes � squash� and squash is lexicographically ordered from left

to right� the violations for this equation are

fsquash �� append� squash �� append�
squash �� nodes� squash �� nodesg

Rewriting equation ����
 gives

squash�Node�l� i� r
� accum
 � squash�l� i�squash�r� accum



As in Example ���� this equation contains no precedence violations� so ReFocus accepts the

new result�

This is useful because transforming the original result gives

squash�Node�l� i� r
� a
 � squash�l� squash�r� a



While this is similar to the actual result� it is not identical� Using precedence violations allows

ReFocus to accept the new result without complaint�

Example ����� in which the derivation for fastpow was used to guide the derivation for

rzip� is similar to Example ��� in that the resulting program is accepted because there are no

violations� However� this case di�ers in that fastpow is an example for which the lexicographic

recursive path ordering is inadequate� To orient ����
� � must be larger than fastpow� But then�

as shown in Example ���� the �nal equation contains the precedence violation ffastpow �� �g�

This does not a�ect the derivation of rzip since each result contains no precedence violations�

However� this is not always the case�

Example ���� Let mult be a function which multiples negative numbers as well as positive

numbers�

mult�
� y
 � 

mult�Int�s� x
� 

 � 

mult�Int�P� x
� Int�P� y

 � Int�P� x � y

mult�Int�P� x
� Int�N� y

 � Int�N� x � y

mult�Int�N� x
� Int�P� y

 � Int�N� x � y

mult�Int�N� x
� Int�N� y

 � Int�P� x � y


Also� modify pow to use the new function instead of ��

���



pow�i� 

 � Int�P� �

pow�i� S�x

 � mult�i� pow�i� x



This version takes an integer for the �rst argument and a natural number for the second� The

new speci�cation for fastpow is

fastpow�i� n� a
 � mult�pow�i� n
� a


Replaying the derivation for fastpow gives the �nal result

fastpow�i� S�x
� a
 � fastpow�i� x�mult�i� a



The precedence violation for this is

ffastpow �� multg ����


Comparing the initial speci�cations for both derivations gives the transform

f� � multg

Applying this to the original set of violations� ffastpow �� �g� gives ����
� This allows ReFocus

to accept the new program even though it contains precedence violations�

Example ���� Consider Example ���� in which we attempted to use the derivation of aprev

to guide a derivation of fastpow� Because the problems contain few common symbols and

the functions have di�erent numbers of arguments� ReFocus was unable to use generalization

to select the correct result� In lieu of other information� ReFocus randomly selects between

alternatives �ii
 and �iii
� By chance� it picks �ii
�

fastpow�i� S�y
� a
 � fastpow�i� y� i
 � a ����


This is the wrong alternative to pick because it is not tail	recursive�

Fortunately� the new result does not pass the check for precedence violations� The prece	

dence violations for ����
 are

ffastpow �� �g � PV 	lex�fastpow�i� S�y
� a
� fastpow�i� y� i

 � ffastpow �� �g � �

Since the recursive case aprev�

aprev�a��x� a
 � aprev�x� a��a


���



has no precedence violations� ReFocus warns the user that the new derivation may not be

acceptable�

These examples show that precedence violations provide a useful� simple test for acceptabil	

ity in transformational implementation systems� In the �rst two cases� precedence violations

suppress warning messages that might have occurred had we required an exact match� In the

third case� precedence violations suggest that the new program may not be acceptable and note

that the problem lies in the topmost position�

However� using precedence violations as the acceptance criteria can fail� One reason is

that the user might be expecting the violation and not look at the results closely� Because

� � fastpow� both alternatives in Example ���� contain the precedence violation fastpow �� ��

Thus the user might be tempted to ignore the warnings from ReFocus� But a more important

failure is that comparing precedence violations may mistakenly lead to accepting programs

which are in the wrong form�

Example ���� Suppose the derivation for fastpow is used to construct a derivation for aprev

and ReFocus mistakenly chooses the result

apprev�a��x� a
 � aprev�x� a��Nil
 �� a

This has the precedence violation faprev �� ��g� If generalization produces the transforms

ffastpow � aprev� � � ��g� then the new precedence violations will be a subset of the trans	

formed violations in the prototype� leading ReFocus to accept the results quietly even though

the program is not tail	recursive�

The solution is to strengthen the term ordering of ReFocus so that derived programs do not

contain precedence violations� Also� in a production environment� the user would need to ex	

amine any precedence violations in the �nal program once development is �nished to ensure

that the program is e�cient enough� The primary usefulness of the check for precedence viola	

tions during replay is to allow the user to ignore small di�erence in programs while correcting

errors or trying out di�erent design decisions� Comparing precedence violations is not accurate

enough to allow the user to replay derivations without ever looking at the results closely�

��� Conclusion

The obvious task for replay is to apply the steps from the prototype derivation to the new

problem� Less obvious� but nearly as important� replay must check that the results of the new

derivation are acceptable� A direct comparison is inadequate for any but the simplest examples�

Instead� the test should attempt to recognize what was achieved in the prototype at a more

abstract level and ensure that the new derivation achieves the same results�

���



This chapter has de�ned a test based on term orderings� Term orderings are an integral

part of rewrite systems� ensuring that rewriting terminates and that inductive proofs are sound�

For program derivation� they also express e�ciency relationships� if s � t� then t is assumed to

be more e�cient than s� Initially� programs are speci�ed as unoriented equations� Derivations

make progress by simplifying equations until they can be oriented in the desired direction� By

identifying which terms block orientation� we obtain a metric which can be used to compare

results�

Examples show that this provides a useful test which is lenient enough that minor di�erences

can be ignored but not so lenient that any program is accepted� The test can fail� but failures

usually occur when derivations with precedence violations are used as prototypes� In any case�

while the test is not always accurate and in a production environment the �nal version of a

program would need to be examined manually� comparing precedence violations does free the

user from checking and rechecking results during program development�

���



Chapter 	

ReFocus

The previous chapters have presented components needed to build a robust replay system�

These components have been used to build a replay system for Focus� ReFocus� This chapter

discusses ReFocus from a global viewpoint� brie�y describing its implementation and how it is

used� It also gives the results of applying ReFocus to a number of examples and evaluates its

usefulness to program maintenance�

The examples comprise the bulk of the chapter� The �rst section reviews the examples in

the preceding chapters� Whereas the preceding chapters presented portions of these examples

to illustrate speci�c replay issues� this chapter presents the complete derivations� These are fol	

lowed by examples which further illustrate the capabilities and limitations of ReFocus� Finally�

ReFocus is applied to a pair of moderately	sized problems to demonstrate that using replay can

save work for the user�

��� An Overview of ReFocus

This section gives an overview of ReFocus� We brie�y describe its implementation and how the

user applies it to a problem�

ReFocus is essentially an interpreter for derivation trees� Given a prototype derivation and a

target node� ReFocus constructs a new derivation by reexecuting the commands used to create

the prototype� Thus the primary input is a derivation and the primary output is a sequence

of commands to be executed by Focus� This is illustrated in Figure ���� The main di�erence

between ReFocus and an interpreter is that ReFocus modi�es commands before executing them�

To use ReFocus� the user speci�es the prototype derivation and target node and invokes

replay� Specifying the prototype and target is done in either of two ways� In the �rst� the user

moves the curser to a node and invokes the command replay� The current node becomes the

prototype� and a new node is created to be the target� ReFocus then uses the initial state of the

prototype to initialize the target� possibly after applying available transforms� and reexecutes

���



user speci�cation

Focus
program

derivation

ReFocus

commands

commands

Figure 
��� High	level view of ReFocus�

the derivation� Alternatively� the user marks a node to be the prototype� moves the cursor to

the intended target� and invokes replay�by�example� ReFocus then reinitializes the target�

without changing its contents�and reexecutes the derivation� The primary use of the �rst

method is to reconstruct derivations after modifying speci�cations� while the primary use for

the second is in derivation	by	analogy�

The implementation of ReFocus is based on a stack� Initially� the stack contains the root

nodes of the target and prototype subtrees� ReFocus repeatedly retrieves the topmost pair

of nodes from the stack� constructs transforms from the initial states and stores them in the

derivation tree� and applies each operation in the prototype�s script to the target� Before

executing an operation� ReFocus applies any available transforms to its arguments� If the

operation creates child nodes� such as expand� ReFocus uses generalization to pair the new

children with the appropriate prototypes and pushes the pairs on to the stack� After �nishing

the script for a node� ReFocus compares the �nal states of the prototype and target and issues

a warning if there are signi�cant di�erences� Since ReFocus is organized around a stack� storing

the current position in the script allows ReFocus to be interrupted and restarted by the user�

This lets the user suspend ReFocus� repair a derivation manually �perhaps by introducing a

new property or modifying the speci�cation
� and continue�

Like Focus� most of ReFocus is implemented in Emacs Lisp �LLtG���� The complete system�

including Focus� Tree	Mode�� and ReFocus� is approximately ������ lines of code�� Figure ���

illustrates the relationships between these systems and gives a rough approximation of the size

of each component �in lines of code
� In the �gure� the nesting re�ects how the system is lay	

ered� for instance� Focus calls Tree	Mode and GnuEmacs functions but not ReFocus functions�

�An Emacs Lisp implementation of Treemacs �Ham��� developed by Sam Kamin

�Not counting blank lines and comments


��




GnuEmacs

Tree�Mode

�	��� lines�

Focus

������ lines�

ReFocus

����� lines�

Generalization

����� lines�

Figure 
��� Components of the Focus system�

Generalization is shown as a discrete component of ReFocus� Approximately ���� lines of this

is a C�� program which computes the set of consistent matchesM as de�ned in ���� �page �

�

This code is written in C�� for speed because it represents the most computation	intensive part

of the generalization algorithm�

��� Examples

The examples are in three groups� a review of previous examples� additional small examples�

and two moderately	sized examples� For each� we give the speci�cations� prototype derivation�

derivation created by replay� and key issues in executing replay� Except for minor di�erences�

the given speci�cations can be input to Focus and the derivation trees are as they appear on the

screen� The minor di�erences consist of font changes� trivial syntax changes �such as writing

�precedence relations�� where one would write �precedence� in Focus
� and joining short lines

to make the examples �t on a single page� Any further edits are described in the examples�

��� Examples from Preceding Chapters

The �rst group consists of complete versions of the examples in the previous chapters�

���



precedence relations� fnodes� fringeg � append � f�atten� squashg
lexicographic append��� �
� �atten��� �
� squash��� �


de�nitions�
append�Nil� y
 � y
append�a�x� y
 � a�append�x� y


fringe�Leaf�x

� x�Nil
fringe�Tree�left� right

 � append�fringe�left
� fringe�right



nodes�Tip
 � Nil
nodes�Node�left� info� right

 � append�nodes�left
� info�nodes�right



properties�

append�append�u� v
� w
 � append�u� append�v� w



Figure 
��� Speci�cation of fringe and nodes�


���� Flattening Trees

Figure ��� gives the complete speci�cations for functions fringe and nodes� �rst introduced

in Section ���� which return a list of items stored in a tree� The fringe function operates

on trees with all the information stored in the leaves� while the nodes function operates on

trees with the information stored in internal nodes� In addition� the speci�cation gives the

precedence relationships between function symbols �where fnodes� fringeg � append is equivalent

to nodes � append and fringe � append
� the lexicographic ordering on the arguments for all

three functions� and the associative property for append� The associativity property� like all

other properties listed in this chapter� can be proven using Focus� However� such proofs are

omitted for brevity�

The fringe function makes two passes over the information stored in the tree� To improve

it� we introduce an accumulating parameter�

�atten�tree� accum
 � append�fringe�tree
� accum


We then derive a program for �atten by expanding fringe to obtain the cases tree � Leaf�x
 and

tree � Tree�left� right
� rewriting each case� and picking the desired result in the second case�

This derivation is given in Figure ����

Other than minor di�erences described in the introduction� the tree shown in Figure ���

appears exactly as it does on the screen� Indentation expresses relationships between nodes�

the children of a node are indented from their parent� with the root node at the top of the

�gure� The �rst line of each node contains the initial state� either as written by the user or as

the result of case analysis� The second line shows that the node has been closed� This means

���



Focus� �atten�tree� accum
 � append�fringe�tree
� accum


closed with program��
�atten�Leaf�x
� accum
 � x�accum
�atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum


script�
focus�on�spec�nil
� �see spec


f�atten �� append� �atten �� fringeg
simplify�nil
 �auto� � �no change

rewrite�nil
 �compile� auto� � �no change

expand�fringe�tree

 �induction�

� cases from fringe�tree


� case tree �� Leaf�x

�atten�Leaf�x
� accum
 � append�
x�� accum


closed �
�atten�Leaf�x
� accum
 � x�accum
script�
simplify�nil
 �auto� � �atten�Leaf�x
� accum
 � x�accum
rewrite�nil
 �compile� auto� � �no change


� case tree �� Tree�left� right

�atten�Tree�left� right
� accum
 �

append�append�fringe�left
� fringe�right

� accum


closed �
�atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum


script�
simplify�nil
 �auto� � �no change


f�atten �� append� �atten �� append� �atten �� fringe� �atten �� fringeg
rewrite�append
 
choices �� �� compile� � �multiple results

pick�expr��atten�Tree�left� right
� accum
 � �atten�left� �atten�right� accum




Figure 
��� Derivation of �atten� prototype for derivation of squash�
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that further operations on the node are disallowed�� The third line gives the �nal state of the

node� For a top	level node� this includes the �nal program given by the derivation or the set

of proven properties� The last section of the node gives the script � that is� the sequence of

commands applied to the node� In addition to the commands and their arguments �where nil

indicates no argument was given
� the script contains details about how to replay each operation�

These include the information given in square brackets �such as �auto�� which indicates Focus

applied the operation automatically
� intermediate results �marked by �
� and any remaining

precedence violations �shown a sets
�

As discussed in Chapter �� the derivation of �atten can be replayed on the speci�cation of

squash de�ned as

squash�tree� accum
 � append�nodes�tree
� accum


To take advantage of the procedures for associative matching built in to Focus� we also replace

the associative property for append by the statement

declare associative append

Executing replay on the new speci�cation gives the derivation shown in Figure ��
� After

completing replay� ReFocus prints the message

Replay��� apparently succeeded

to indicate that it �nds that the results of replay are acceptable�

ReFocus addresses four key issues in applying the derivation of �atten to squash�

� �nding the appropriate expression to be expanded �nodes�tree

�

� matching the cases so rewrite�append
 was applied to the appropriate case�

� picking the right result in the second case� and

� checking that the program for squash is acceptable�

The details for these steps are given in Examples ���� 
�
�� ���� and ����

To complete the derivation� we derive new versions of fringe and nodes which call �atten and

squash with the appropriate parameters� The resulting derivations are shown in Figure �����

In the �gure� the notation 
x� is an abbreviation for x�Nil� in general� the list x�� � � � �xn�Nil is

written as 
x�� � � � � xn�� The derivation of programs for fringe and nodes is straightforward and

does not create signi�cant issues for replay� Because this is almost always the case� we omit

this �nal step from the remaining examples�

�For space� the �closed � marker is omitted in most of the derivation trees in this chapter� but all derivations
are shown in the closed state


�In this and subsequent derivations� details about commands and their results have been omitted to reduce
clutter
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Focus� squash�tree� accum
 � append�nodes�tree
� accum


closed with program��
squash�Tip� accum
 � accum
squash�Node�left� info� right
� accum
 � squash�left� info�squash�right� accum


script�

focus�on�spec�nil
� �see spec
 fsquash �� append� squash �� nodesg
simplify�nil
 �auto� � �no change

rewrite�nil
 �compile� auto� � �no change

expand�nodes�tree

 �induction�

� cases from nodes�tree


� case tree �� Tip
squash�Tip� accum
 � append�Nil� accum


closed �
squash�Tip� accum
 � accum
script�
simplify�nil
 �auto� � squash�Tip� accum
 � accum
rewrite�nil
 �compile� auto� � �no change


� case tree �� Node�left� info� right

squash�Node�left� info� right
� accum
 �

append�append�nodes�left
� info�nodes�right

� accum


closed �
squash�Node�left� info� right
� accum
 � squash�left� info�squash�right� accum


script�
simplify�nil
 �auto� � �no change


fsquash �� append� squash �� append� squash �� nodes� squash �� nodesg
rewrite�append
 
choices �� �� compile� � �multiple results

pick�expr�squash�Node�left� info� right
� accum
 �

squash�left� info�squash�right� accum




Replay��� apparently succeeded

Figure 
��� Result of replaying Figure ��� to derive squash�
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Focus� fringe

closed with program��
fringe�Leaf�x

 � 
x�
fringe�Tree�left� right

 � �atten�left� fringe�right


script� focus�on�function

� fringe�Leaf�x

 � 
x�
fringe�Leaf�x

� 
x�
script� simplify� rewrite

� fringe�Tree�left� right

 � append�fringe�left
� fringe�right


fringe�Tree�left� right

 � �atten�left� fringe�right


script� simplify� rewrite

a� Derivation of program for fringe� prototype for �b
�

Focus� nodes

closed with program��
nodes�Tip
 � Nil
nodes�Node�left� info� right

 � squash�left� info�nodes�right


script� focus�on�function

� nodes�Tip
 � Nil
nodes�Tip
 � Nil
script� simplify� rewrite

� nodes�Node�left� info� right

 � append�nodes�left
� info�nodes�right


nodes�Node�left� info� right

 � squash�left� info�nodes�right


script� simplify� rewrite

Replay��� apparently succeeded

b� Result of replaying derivation of fringe on nodes�

Figure 
�	� Derivation of programs for fringe and nodes�
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���� Sorted Lists

Figure ���a speci�es a quadratic	time predicate� sorted� which tests if a list is sorted from low

to high� Elements in the list are compared by an arbitrary relation �� The statement

declare external ��


indicates that � is intentionally unde�ned�� However� the property

x � z fx � y � y � zg � True

states that � is assumed to be transitive� where p fqg � r means p � r whenever q is satis�ed�

To derive a linear	time program for sorted� we start with the speci�cation

sortedp�x� � sorted�x�

and expand twice� We then prove that if a is smaller than the �rst element of a sorted list� it

is smaller than the entire list�

smaller�l� a
 fa � y � sortedp�y�l
g � True

This property is then used to remove the redundant test in sortedp� The complete derivation

is given in Figure ���� where �identity indicates that the given case is reduced to an identity of

the form u � u�

To �t the derivation tree on a page and to reduce clutter� we have omitted initial states

in nodes� cases from nodes �since the subterms that were expanded are given in the scripts in

the parent nodes
� and precedence violations� These are generally omitted in later derivations

as well� The scripts in Figure ��� introduce two new operations� add�inductive�hypotheses

and close�subsidiary� The �rst allows the user to force expand to introduce the inductive

hypotheses� even when the given rule cannot be oriented� The second controls when a subsidiary

focus node is replayed �relative to other operations in a script
�

As described in Example ����� we can use replay to update the sortedp program after

modifying sorted� Figure ���b gives the speci�cation of a modi�ed version of sorted which

renames � to less and adds a parameter dir� The dir parameter controls if the list is sorted from

low to high or high to low� The speci�cation includes a property stating that less is transitive�

but this property can be proven using the transitivity of �� Replaying the derivation of sortedp

after introducing less and dir gives the derivation in Figure ���� This �gure omits a number of

auxiliary properties created by the subsidiary proof which result from the relationship between

� and less�

Again� ReFocus constructs the new derivation without any error messages� The key to

constructing the new derivation is updating the property focus to

�Writing an operator in parentheses allows it to be used in Focus as the name of a function rather than part
of an expression
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precedence relations�

sorted � smaller � sortedp � ��

declare external ��

de�nitions�

smaller�Nil� x
 � True
smaller�y�l� x
 � x � y � smaller�l� x

sorted�Nil
 � True
sorted�a�l
 � smaller�l� a
 � sorted�l


properties�
x � z fx � y � y � zg � True

a� Original speci�cation�

precedence relations�

sorted � smaller � sortedp � less � ��

declare external ��

de�nitions�

less�a� b� Up
 � a � b
less�a� b� Down
 � b � a
smaller�x� Nil� dir
 � True
smaller�x� y�l� dir
 � less�x� y� dir
 � smaller�x� l� dir


sorted�Nil� dir
 � True
sorted�a�l� dir
 � smaller�a� l� dir
 � sorted�l� dir


properties�

x � z fx � y � y � zg � True
less�x� z� dir
 fless�x� y� dir
 � less�y� z� dir
g � True

b� Modi�ed speci�cation�

Figure 
��� Original and modi�ed speci�cations of sorted�
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Focus� sortedp�x� � sorted�x�
�closed with program	

sortedp�Nil� � True
sortedp��a
� � sortedp�Nil�
sortedp�a�y�l�� � a � y � sortedp�y�l��
script� simplify� rewrite� expand�sorted�x��

� case x �� Nil
sortedp�Nil� � True
script� simplify� rewrite

� case x �� a�l
sortedp�a�l� � smaller�l
 a� � sortedp�l�
script� simplify� rewrite� expand�smaller�l
a��� close�subsidiary

Prove� smaller�l
 a� fa � y � sortedp�y�l�g � True
�closed with properties	

smaller�l
 a� fa � y � sortedp�y�l�g � True
sortedp�y�l� fa � y � not�smaller�l
 a��g � False
a � y fnot�smaller�l
 a�� � sortedp�y�l�g � False
script� simplify� rewrite� expand�smaller�l
 a��� add�inductive�hypotheses

� case l �� Nil	 �identity
script� simplify� rewrite

� case l �� y��l�
a � y� � smaller�l�
 a� fa � y � sortedp�y�y��l��g � True
script� universal�sortedp�y�l���

� case sortedp�y�l��
a � y� fsortedp�y�l�� � a � y � sortedp�y�y��l��g � True
script� simplify� rewrite� rewrite�smaller�� simplify� expand�sortedp�y�y��l���

� case True	 �identity
script� simplify� rewrite� pick�expr�a � y� � � � �� rewrite�a � y��

� case not�sortedp�y�l���
a � y� � smaller�l�
 a� fnot�sortedp�y�l��� � a � y � sortedp�y�y��l��g � True
script� simplify� rewrite� expand�sortedp�y�y��l���

� case True	 �identity
script� simplify� rewrite

� case l �� Nil
sortedp��a
� � sortedp�Nil�
script� simplify� rewrite

� case l �� y�l�
sortedp�a�y�l�� � a � y � sortedp�y�l��
script� simplify� rewrite�smaller�� simplify

Figure 
�
� Derivation of original sortedp�
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Focus� sortedp�x
 dir� � sorted�x
 dir�
�closed with program	

sortedp�Nil
 dir� � True
sortedp��a

 dir� � sortedp�Nil
 dir�
sortedp�a�y�l�
 dir� � less�a
 y
 dir� � sortedp�y�l�
 dir�
script� simplify� rewrite� expand�sorted�x
 dir��

� case x �� Nil
sortedp�Nil
 dir� � True
script� simplify� rewrite

� case x �� a�l
sortedp�a�l
 dir� � smaller�a
 l
 dir� � sortedp�l
 dir�
script� simplify� rewrite� expand�smaller�a
l
dir��� close�subsidiary

Prove� smaller�a
 l
 dir� fless�a
 y
 dir� � sortedp�y�l
 dir�g � True
�closed with properties	

smaller�a
 l
 dir� fless�a
 y
 dir� � sortedp�y�l
 dir�g � True
� � �derivative properties suppressed � � �

script� simplify� rewrite� expand�smaller�a
 l
 dir��� add�inductive�hypotheses

� case l �� Nil	 �identity
script� simplify� rewrite

� case l �� y��l�
less�a
 y�
 dir� � smaller�a
 l�
 dir� fless�a
 y
 dir� � sortedp�y�y��l�
 dir�g � True
script� universal�sortedp�y�l�
 dir��

� case sortedp�y�l�
 dir�
less�a
 y�
 dir� fsortedp�y�l�
 dir� � less�a
 y
 dir� � sortedp�y�y��l�
 dir�g � True
script� simplify� rewrite� rewrite�smaller�� simplify� expand�sortedp�y�y��l�
dir��

� case True	 �identity
script� simplify� rewrite� pick�expr�less�a
y�
dir� � � � �� rewrite�less�a
y�
dir��

� case not�sortedp�y�l�
 dir��
less�a
 y�
 dir� � smaller�a
 l�
 dir�

fnot�sortedp�y�l�
 dir�� � less�a
 y
 dir� � sortedp�y�y��l�
 dir�g � True
script� simplify� rewrite� expand�sortedp�y�y��l�
 dir��

� case True	 �identity
script� simplify� rewrite� pick�expr��identity�

� case l �� Nil
sortedp��a

 dir� � sortedp�Nil
 dir�
script� simplify� rewrite

� case l �� y�l�
sortedp�a�y�l�
 dir� � less�a
 y
 dir� � sortedp�y�l�
 dir�
script� simplify� rewrite�smaller�� simplify

Replay��� apparently succeeded

Figure 
��� Result of replaying Figure ��� after modifying sortedp�
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smaller�l� a� dir
 fless�a� y� dir
 � sortedp�y�l� dir
g � True

ReFocus also updates a number of expand� universal� rewrite� and pick�expr operations to

re�ect the change from � to less� For details� see Example �����


���� From Computing Exponentials to Joining Lists

Figure ���� gives the speci�cation of a function pow�x�y
 which raises x to the power of y� To

make this function tail	recursive� we introduce an accumulating parameter a�

fastpow�x� n� a
 � pow�x� n
 � a

As shown in Figure ����� this leads to a tail	recursive program for fastpow�

The derivation of fastpow can be used to guide the derivation of a program to join lists�

Figure ���� speci�es a function revzip which joins two lists in reverse order� As with fastpow�

this function can be made tail	recursive by introducing an accumulating parameter�

rzip�u� v� a
 � revzip�u� v
 �� a

Given this speci�cation� replaying the derivation in Figure ���� gives the derivation in Fig	

ure ����� The new derivation is constructed with no error messages�

During replay� ReFocus updates expand and rewrite steps to re�ect name	space changes�

It also matches cases� this is particularly important in this example since there are more cases

in the result than in the prototype� and both of the extra cases must be matched to the second

case of fastpow� After rewriting ��� ReFocus also picks the correct result in each of the recursive

cases� For details on these steps� see Example ����� Finally� ReFocus veri�es that the new

program is acceptable� In this case� it is acceptable because while the prototype has precedence

violations� the new program does not�

Figure ���� speci�es a version of pow which has been extended to allow negative values�

Each number is represented by sign and magnitude� and functions have been introduced to

add� subtract� and multiply such numbers� Replaying the derivation of fastpow in Figure ����

on the speci�cation

fastpow�v� n� a
 � mult�pow�i� n
� a


gives the derivation in Figure ����� As for the rzip derivation� ReFocus updates rewrite and

expand steps� matches cases appropriately� and picks the correct result in the recursive case�

Equally importantly� ReFocus accepts the new derivation without any error messages� As

discussed in Example ����� the new program contains precedence violations� but these match

the violations in the prototype �after applying transforms
�

���



precedence relations� pow � ��
 � f�	
� fastpowg
lexicographic fastpow��� �� �

declare ac �	
� ��


de�nitions�
a 	 
 � a
a � 
 � 

pow�x� 

� �

a 	 S�b
 � S�a 	 b

a � S�b
 � a 	 a � b
pow�x� S�y

 � x � pow�x� y


Focus� fastpow�x� n� a
 � pow�x� n
 � a

closed with program��
fastpow�x� 
� a
 � a
fastpow�x� S�y
� a
 � fastpow�x� y� x � a

script�

focus�on�spec ffastpow �� �� fastpow �� powg
simplify

rewrite

expand�pow�x� n



� cases from pow�x� n


� case n �� 

fastpow�x� 
� a
 � � � a
fastpow�x� 
� a
 � a
script�

rewrite��
 ffastpow �� �	
g
rewrite

� case n �� S�y

fastpow�x� S�y
� a
 � x � pow�x� y
 � a
fastpow�x� S�y
� a
 � fastpow�x� y� x � a

script�

rewrite��

pick�expr�fastpow�x� S�y
� a
 � fastpow�x� y� x � a

 ffastpow �� �g

Figure 
���� Speci�cation and derivation of fastpow�
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precedence relations� revzip � ���
 � rzip
lexicographic � �� �� rzip��� �� �

declare associative ���


de�nitions�
Nil �� y � y
a�x �� y � a��x �� y

revzip�Nil� Nil
 � Nil

revzip�a�as� Nil
 � revzip�as� Nil
 �� 
a�
revzip�Nil� b�bs
 � revzip�Nil� bs
 �� 
b�
revzip�a�as� b�bs
 � revzip�as�bs
 �� 
a�b�

Focus� rzip�u� v� a
 � revzip�u� v
 �� a

closed with program��
rzip�Nil� Nil� a
 � a
rzip�a��as� Nil� a
 � rzip�as� Nil� a��a

rzip�Nil� b�bs� a
 � rzip�Nil� bs� b�a

rzip�a��as� b�bs� a
 � rzip�as� bs� a��b�a

script�

focus�on�spec frzip �� �� � rzip �� revzipg
simplify� rewrite� expand�revzip�u� v



� cases from revzip�u� v


� case v �� Nil � u �� Nil
rzip�Nil� Nil� a
 � Nil �� a
rzip�Nil� Nil� a
 � a
script� rewrite���


� case v �� Nil � u �� a��as
rzip�a��as� Nil� a
 � revzip�as� Nil
 �� 
a�� �� a
rzip�a��as� Nil� a
 � rzip�as� Nil� a��a

script�

rewrite���
� pick�expr�rzip�a��as� Nil� a
 � rzip�as� Nil� a��a



� case v �� b�bs � u �� Nil
rzip�Nil� b�bs� a
 � revzip�Nil� bs
 �� 
b� �� a
rzip�Nil� b�bs� a
 � rzip�Nil� bs� b�a

script�

rewrite���
� pick�expr�rzip�Nil� b�bs� a
 � rzip�Nil� bs� b�a



� case v �� b�bs � u �� a��as
rzip�a��as� b�bs� a
 � revzip�as� bs
 �� 
a�� b� �� a
rzip�a��as� b�bs� a
 � rzip�as� bs� a��b�a

script�

rewrite���
� pick�expr�rzip�a��as� b�bs� a
 � rzip�as� bs� a��b�a



Replay��� apparently succeeded

Figure 
���� Speci�cation of rzip and result of replaying Figure �����
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precedence relations�

add � ��
 � fnorm� subg
add � �	

pow � mult � f��
� fastpowg

lexicographic fastpow��� �� �

declare ac mult

de�nitions�
norm�

� 

norm�Int�s� 


 � 

norm�Int�s� S�x


 � Int�s� S�x



x � y � norm�sub�x� y


sub�
� 

 � 

sub�
� S�y

 � Int�N� S�y


sub�S�x
� 

 � Int�P� S�x


sub�S�x
� S�y

 � sub�x� y


add�
� y
 � y
add�Int�s� x
� 

 � Int�s� x

add�Int�P� x
� Int�P� y

 � Int�P� x 	 y

add�Int�N� x
� Int�N� y

 � Int�N� x 	 y

add�Int�P� x
� Int�N� y

 � x � y
add�Int�N� x
� Int�P� y

 � y � x

mult�
� y
 � 

mult�Int�s� x
� 

 � 

mult�Int�P� x
� Int�P� y

 � Int�P� x � y

mult�Int�P� x
� Int�N� y

 � Int�N� x � y

mult�Int�N� x
� Int�P� y

 � Int�N� x � y

mult�Int�N� x
� Int�N� y

 � Int�P� x � y


pow�i� 

 � Int�P� �

pow�i� S�x

 � mult�i� pow�i� x



properties�

mult�Int�P� �
� a
 � a

Figure 
���� Integer	based pow speci�cation�

���



Focus� fastpow�i� n� a
 � mult�pow�i� n
� a


closed with program��
fastpow�i� 
� a
 � a
fastpow�i� S�x
� a
 � fastpow�i� x� mult�i� a


script�
focus�on�spec ffastpow �� mult� fastpow �� powg
simplify

rewrite

expand�pow�i� n



� cases from pow�i� n


� case n �� 

fastpow�i� 
� a
 � mult�Int�P� �
� a

fastpow�i� 
� a
 � a
script�

rewrite�mult


� case n �� S�x

fastpow�i� S�x
� a
 � mult�mult�i� pow�i� x

� a

fastpow�i� S�x
� a
 � fastpow�i� x� mult�i� a


script�

rewrite�mult

pick�expr�fastpow�i� S�x
� a
 � fastpow�i� x� mult�i� a




ffastpow �� multg

Replay��� apparently succeeded

Figure 
���� Result of replaying Figure ���� on modi�ed version of fastpow�

�
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���� From Reversing Lists to Computing Exponentials

The �nal example from the preceding chapters illustrates ReFocus failing to construct the

desired program but succeeding in warning the user of potential problems�

Figure ����a speci�es a function� rev� which reverses a list� As shown� the speci�cation

aprev�l� a
 � rev�l
 �� a

leads to a tail	recursive program for reversing lists� Replaying this derivation on the speci�cation

fastpow gives the derivation in Figure ����b� As discussed in Example ����� ReFocus chooses

the wrong alternative after rewriting � in the second case�

However� ReFocus does warn the user that the new derivation may not be acceptable�

These messages are given in Figure ���
� The warning in the �rst case arises because while

rewrite���
 is su�cient in the aprev derivation� an extra rewrite step is needed in the fastpow

derivation to completely reduce the term� The warning in the second case arises because the

generalization algorithm failed� Since there are signi�cant di�erences between the two problems

in both the structure and function names� �� was not transformed to �� and so rewrite failed

to produce the desired result� The user must repair the derivation by applying the rewrite���


step manually��

Because ReFocus produced error messages� it prints

Replay��� failed

after completing replay� While replaying aprev to derive fastpow fails� Section ����� shows that

replay is successful on a related example based on computing factorials�

�Both of these problems could be avoided by modifying the Focus rewrite operation to always apply asso�
ciativity and commutativity
 However� this would require signi�cant modi�cations to Focus


�
�



precedence relation�
rev � ���
 � aprev

lexicographic � �� �� aprev��� ��
declare associative ���

de�nitions�

Nil �� y� y
a�x �� y� a��x �� y

rev�Nil
 � Nil
rev�a�x
 � rev�x
 �� 
a�

Focus� aprev�l� a
 � rev�l
 �� a

closed with program��
aprev�Nil� a
 � a
aprev�a��x� a
 � aprev�x� a��a

script� simplify� rewrite� expand�rev�l



� cases from rev�l


� case l �� Nil
aprev�Nil� a
 � Nil �� a
aprev�Nil� a
 � a
script� rewrite���


� case l �� a��x
aprev�a��x� a
 � rev�x
 �� 
a�� �� a
aprev�a��x� a
 � aprev�x� a��a

script� rewrite���
� pick�expr�� � �


a� Speci�cation and derivation of aprev�

Focus� fastpow�x� n� a
 � pow�x� n
 � a

closed with program��
fastpow�x� 
� a
 � a 	 

fastpow�x� S�y
� a
 � fastpow�x� y� x
 � a
script� simplify�rewrite�expand�pow�x� n



� cases from pow�x� n


� case n �� 

fastpow�x� 
� a
 � � � a
fastpow�x� 
� a
 � a 	 

script� rewrite��
 ffastpow �� �	
g

� case n �� S�y

fastpow�x� S�y
� a
 � x � pow�x� y
 � a
fastpow�x� S�y
� a
 � fastpow�x� y� x
 � a
script� rewrite��
� pick�expr�� � �


Replay��� failed

b� Result of replaying �a
 to derive fastpow�

Figure 
���� Replaying aprev to derive fastpow�

�
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Replay error �� � ������ � case n �� 
�
Both initial and �nal states do not match prototype
new� fastpow�x� 
� a
 � a 	 


violations� ffastpow �� �	
g
old� aprev�Nil� a
 � a

violations� none

Replay error �� � ������ � case n �� S�y
�
Final state does not match prototype
new� fastpow�x� S�y
� a
 � fastpow�x� y� x
 � a

violations� ffastpow �� ��
g
old� aprev�a��x� a
 � aprev�x� a��a


violations� none

Figure 
���� Error messages from replaying the aprev to derive fastpow�

�
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��� Illustrations of ReFocus
s Strengths and Weaknesses

The preceding examples were designed to exhibit key aspects of replay� modifying derivations

and testing results� In contrast� the examples in this section are designed to show some of the

strengths and weaknesses of ReFocus as a complete system and to suggest possible improve	

ments�


���� From Reversing a List to Computing Factorials

The �rst of these continues the example in Section ������ While the derivation of aprev is not

useful as a prototype for deriving fastpow� it is useful as a prototype for deriving a tail	recursive

version of a function which computes factorials� fact� Figure ����a de�nes fact� and Figure ����b

shows the results of replaying the derivation of aprev on the speci�cation

f�x� a
 � fact�x
 � a

Again� ReFocus generates error messages� These are given in Figure ����c� But in this case�

replay did not actually fail� The �rst message re�ects the fact that an explicit rewrite of � is

needed to simplify the result� The second re�ects the limitation of the term ordering used in

Focus� As described in Section ���� the result

f�S�n
� a
 � f�n� a 	 a � n


is acceptable� but ReFocus generates an error because the prototype contains no violations

while the new result does� But in spite of the error messages� ReFocus is successful in obtaining

a tail	recursive program for f�

Discussion

ReFocus was successful on this example because both rev and fact have one parameter� This

means that generalization can establish correspondences between f and aprev� � and ��� and

fact and rev� However� having the same number of parameters does not ensure replay will be

successful� Consider the derivation in Figure ����a in which the arguments to � have been

reversed�

f�x� a
 � a � fact�x


ReFocus fails to obtain a tail	recursive program and prints the error message given in Fig	

ure ����b�

The problem is that generalization failed� Comparing the focus speci�cations for aprev

and f gives the transform x��� x� � x� � x� �among others
� This transform is too speci�c

because it only matches a term with arguments� As a result� rewrite��
 is not executed in the

�
�



precedence relations�

fact � ��
 � �	
 � f
lexicographic f��� �

declare ac �	
� ��

de�nitions�

fact�

 � �
fact�S�n

 � S�n
 � fact�n

a 	 
 � a
a 	 S�b
 � S�a 	 b

a � 
 � 

a � S�b
 � a 	 a � b

Focus� f�x� a
 � fact�x
 � a

closed with program��
f�
� a
 � � � a
f�S�n
� a
 � f�n� a 	 a � n

script� simplify� rewrite�

expand�fact�x



� cases from fact�x


� case x �� 

f�
� a
 � � � a
f�
� a
 � � � a
script� simplify� rewrite

� case x �� S�n

f�S�n
� a
 � S�n
 � fact�n
 � a
f�S�n
� a
 � f�n� a 	 a � n

script� simplify� rewrite��
�
pick�expr�� � �


Replay��� failed

a� Speci�cations� b� Results of replaying aprev �����a
 to derive f�

Replay error �� � ������ � case x �� 
�
Final state does not match prototype
new� f�
� a
 � � � a

violations� ff �� ��
g
old� aprev�Nil� a
 � a

violations� none

Replay error �� � ������ � case x �� S�n
�
Both initial and �nal states do not match prototype
new� f�S�n
� a
 � f�n� a 	 a � n


violations� ff �� ��
� f �� �	
g
old� aprev�a��x� a
 � aprev�x� a��a


violations� none

c� Error messages�

Figure 
��	� Replaying aprev to derive f�

�





Focus� f�x� a
 � a � fact�x


closed with program��
f�
� a
 � a
f�S�n
� a
 � a � �S�n
 � fact�n


script� simplify� rewrite�

expand�fact�x



� cases from fact�x


� case x �� 

f�
� a
 � a � �
f�
� a
 � a
script� simplify� rewrite

� case x �� S�n

f�S�n
� a
 � a � �S�n
 � fact�n


f�S�n
� a
 � a � �S�n
 � fact�n


script� simplify� rewrite

Replay��� failed

Replay error �� � ������ � case x �� S�n
�
Final state does not match prototype
new� f�S�n
� a
 � a � �S�n
 � fact�n



violations� ff �� ��
� f �� ��
� f �� factg
old� aprev�a��x� a
 � aprev�x� a��a


violations� none

a� Unsuccessful result of replaying b� Error output�
aprev on modi�ed f�

Figure 
���� Output of replaying aprev on alternative speci�cation of f�

derivation of f� Thus generalization fails for the same reason that it fails in Example ����� we

have simultaneously changed the names of functions and the structure of their arguments�

One solution would be to change how ReFocus applies generalization� Instead of attempt	

ing to simply transform the argument to the rewrite step� ReFocus should ensure that the

argument does refer to a symbol which appears in the equation being acted upon�

f�S�n
� a
 � a � �S�n
 � fact�n



This could be done by using generalization to match the structure of this case of f against the

corresponding case of aprev�

aprev�a��x� a
 � rev�x
 �� 
a�� �� a

ReFocus could then use this information to match � with ��� This use of generalization would

improve the robustness of replay� However� such applications of generalization must be de�ned

more precisely before implementing them in ReFocus� this is left as future work�

�
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precedence relations�

sum � plus� app � add
lexicographic plus��� �

de�nitions�

plus�
� y
 � y
plus�S�x
� y
 �

S�plus�x� y


sum�Empty
 � 

sum�Add�n� x

 �

plus�n� sum�x


app�Empty� y
 � y
app�Add�n� x
� y
 �

Add�n� app�x� y


properties�

plus�plus�x� y
� z
 �
plus�x� plus�y� z



Prove� sum�app�x� y

 �
plus�sum�x
� sum�y




closed with properties ��
sum�app�x� y

 � plus�sum�x
� sum�y


script� simplify�rewrite�expand�app�x� y



� cases from app�x� y


� case x �� Empty
sum�y
 � plus�sum�Empty
� sum�y


�identity
script� simplify� rewrite

� case x �� Add�n� x�

sum�Add�n� app�x�� y


 �

plus�sum�Add�n� x�

� sum�y


�identity
script� simplify� rewrite

a� Speci�cation of sum� b� Proof�

Figure 
��
� Proof that sum distributes over app�


���� Examples Illustrating Large�Grained Operators

Because Focus operators are large	grained� many examples are trivial for replay� This section

illustrates this using examples drawn from other work�

Examples from �KW���

Kolbe and Walther �KW��� give several reuse examples in theorem proving� Their work� based

on explanation	based learning �DM��� MKKC���� identi�es key steps in proofs and generalizes

them to construct proof schemata to be applied to other problems� However� such an analysis

is not necessary in ReFocus �at least for the given examples
 because Focus operators are

large	grained�

Figure ����a de�nes a function� sum� which adds up the numbers in a list� The derivation

in Figure ����b shows that this function distributes over the append operator app�	

sum�app�w� y

 � plus�sum�x
� sum�y



This derivation can be used to prove a related result for multiplication�

prod�app�x� y

 � times�prod�x
� prod�y



�We use the names from �KW��� for consistency with that paper


�
�



where times multiplies two numbers and prod multiplies the numbers in a list� The speci�cation

and result of replaying Figure ����b are given in Figure ����a� ReFocus completes this proof

without any error messages�

Similarly� replaying Figure ����b can be used to show that computing list length distributes

over appending lists�

len�app�x� y

 � plus�len�x
� len�y



The speci�cation of these functions and the result of replay are given in Figure ����b� Again�

there are no error messages�

Discussion

These examples are simple for ReFocus because of the emphasis on large	grained operators

in Focus� Replay would have been successful even if ReFocus did not support generalization

and comparing precedence violations� Each proof consists of expanding app and applying the

default simplify and rewrite operations� Generalization does not play a role since the same

term is expanded in each and since each case has the same script� This demonstrates that

large	grained operators simplify replay�

Example from HOL

Section ��� gives the HOL �Gor��� proofs for distributing len over app and times over plus�

Because the proofs are so dissimilar� adding a replay system to HOL which could handle this

example would be di�cult� In contrast� the steps are the same for both proofs in Focus�

Given the de�nitions in Figures ����a and ����� replaying the derivation in Figure ����b gives

a proof that times distributes over plus as shown in Figure ����� Again� ReFocus completes the

proof without errors� and generalization does not play a role�

�
�



precedence relations�

prod � times � plus
lexicographic times��� �

de�nitions�

times�
� y
 � 

times�S�x
� y
 �

plus�y� times�x� y


prod�Empty
 � S�


prod�Add�n� x

 �

times�n� prod�x


properties�

times�times�x� y
� z
 �
times�x� times�y� z



plus�a� 

 � a

Prove� prod�app�x� y

 � times�prod�x
� prod�y



closed with properties ��
prod�app�x� y

 � times�prod�x
� prod�y


script� simplify�rewrite�expand�app�x� y



� cases from app�x� y


� case x �� Empty
prod�y
 � times�prod�Empty
� prod�y


�identity
script� simplify� rewrite

� case x �� Add�n� x�

prod�Add�n� app�x�� y


 �

times�prod�Add�n� x�

� prod�y


�identity
script� simplify� rewrite

Replay��� apparently succeeded

a� Result of replaying Figure ����b to show that prod distributes over app�

precedence relations�

len � plus
de�nitions�

len�Empty
 � 

len�Add�n� x

 � S�len�x



properties�
plus�plus�x� y
� z
 �

plus�x� plus�y� z



Prove� len�app�x� y

 � plus�len�x
� len�y



closed with properties ��
len�app�x� y

 � plus�len�x
� len�y


script� simplify�rewrite�expand�app�x� y



� cases from app�x� y


� case x �� Empty
len�y
 � plus�len�Empty
� len�y


�identity
script� simplify� rewrite

� case x �� Add�n� x�

len�Add�n� app�x�� y


 �

plus�len�Add�n� x�

� len�y


�identity
script� simplify� rewrite

Replay��� apparently succeeded

b� Result of replaying Figure ����b to show that len distributes over app�

Figure 
���� Replay examples from �KW����

�
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Prove� times�plus�a� b
� c
 � plus�times�a� c
� times�b� c



closed with properties ��
times�plus�a� b
� c
 � plus�times�a� c
� times�b� c


script� simplify� rewrite� expand�plus�a� b��

� cases from plus�a� b


� case a �� 

times�b� c
 � plus�times�
� c
� times�b� c


�identity
script� simplify� rewrite

� casea �� S�x

times�S�plus�x� b

� c
 � plus�times�S�x
� c
� times�b� c


�identity
script� simplify� rewrite

Replay��� apparently succeeded

Figure 
���� Result of replaying Figure ����b to show that times distributes over plus�

���



��� Moderately	sized Examples

Whereas the previous examples were designed to illustrate ReFocus� the remaining examples

in this chapter are designed to show the usefulness of replay by applying it to moderately	sized

examples� These examples are useful because they involve a number of steps and so show that

replay can save the user a signi�cant amount of work�


���� Circuit Veri�cation

The following example� motivated by �GJCOG���� is based on verifying a circuit which computes

the parity of a bitstream� Figure ���� de�nes two parity functions� oddParity� which returns �

if a bitstream contains an odd number of ��s and � otherwise� and evenParity� which returns �

if a bitstream contains an even number of ��s and � otherwise�


�This speci�cation introduces precondition statements to constrain how the functions are called
 In this case�
the preconditions specify types
 Type declarations could be used instead� but these are currently only supported
for documentation� they are not applied anywhere by Focus


precedence relations�
fevenParity� oddParityg � fall binary� negg � binary

precondition oddParity�l
 � l �� Nil � all binary�l

precondition evenParity�l
 � l �� Nil � all binary�l

precondition neg�i
 � binary�i


de�nitions�

binary�x
 � x �� 
 j x �� �
all binary�Nil
 � True
all binary�i�input
 � binary�i
 � all binary�input

neg��
 � 

neg�

 � �

oddParity�

�
 � �
oddParity�
��
 � 

oddParity���rest
 frest �� Nilg � neg�oddParity�rest


oddParity�
�rest
 frest �� Nilg � oddParity�rest


evenParity�

�
 � 

evenParity�
��
 � �
evenParity�
�rest
 frest �� Nilg � evenParity�rest

evenParity���rest
 frest �� Nilg � neg�evenParity�rest



Figure 
���� Parity functions�

���



The circuit in Figure ����a �reproduced from �GJCOG��� with minor modi�cations
 is

intended to implement oddParity� while the circuit in Figure ����b is intended to implement

evenParity� The devices used in the circuits are

NEG� negates its input�

ZERO� continuously produces ��

ONE� continuously produces ��

MUX� uses the leftmost input line to control which of the remaining

inputs is passed through� where � selects the rightmost line�

REG� saves its input when clocked and outputs that value until the

next cycle�

The de�nitions in Figure ���� encode the odd parity circuit� The state of the circuit is

represented by State�r�� r�� out
 where r� is the state of REG �� r� is the state of REG �� and

out is the circuit�s output� The top	level function is oParCirc which initializes the circuit and

calls opar� The function opar models each iteration of the sircuity by feeding the register values

and input into the circuit to compute the new output value�

To prove the circuit�s correctness� we show

oddParity�inp
 fall binary�inp
 � inp �� Nilg � output�oParCirc�inp



The proof is shown in Figures ���� and ���
� It is constructed by repeatedly expanding opar

and mux until each case is an instance of an earlier case�� Then rewriting is applied to reduce

the case to �identity�

This proof can be used to help verify the even parity circuit in Figure ����b� Figure ����

speci�es functions eParCirc and epar which implement this circuit� The key di�erences between

these functions and oParCirc and opar are marked with boxes� the device ONE has been replaced

by ZERO and the inputs to the lower MUX device have been swapped� To verify the resulting

circuit� we prove

evenParity�inp
 fall binary�inp
 � inp �� Nilg � output�eParCirc�inp



The result of replaying Figures ���� and ���
 is given in Figures ���� and ����� These

derivations show that replay is only partly successful� the case marked by a box needs further

work as shown by the error messages in Figure ����� To complete the derivation� we reinvoke

replay with the node marked by � in Figure ����� This gives the derivation in Figure �����

which ReFocus constructs with no error messages�

	The reorient operator appearing in some of these cases is used to orient a property before expanding it


���



in

NEG

ONE MUX

REG �

MUX

REG �

out

s

s

s

in

NEG

ZERO MUX

REG �

MUX

REG �

out

s

s

s

a� Odd parity circuit� b� Even parity circuit�

Figure 
���� Implementations of oddParity and evenParity�

���



Discussion

ReFocus failed when constructing the derivations in Figures ���� and ���� because generalization

matched the framed case to the sibling of node � �marked by � in Figure ���

 rather than

to � � The initial states of both cases �which are not shown
 di�er only in the placement of


�s and ��s� with the result that generalization is not able to adequately distinguish between

them� Generalization also causes problems when completing the proof in Figure ���� and so

was turned o�� These problems indicate that further work is needed on applying generalization

to ReFocus� However� generalization is useful for matching cases when constructing the proof

in Figures ���� and �������

In any case� ReFocus does signi�cantly reduce the amount of work for the user by replaying

as much of the proof of oParCirc as possible� Even if the user does not recognize that the wrong

case was matched during replay� replaying the proof of oParCirc constructs a large portion of

the proof for eParCirc and the remainder can be constructed by hand� This illustrates that

replay is useful even when it is successful on only part of a problem�

�
Furthermore� turning generalization o� does not improve the results of replay in �
�� and �
��


���



precedence relations�

oParCirc � opar � fall binary� one� negg
oParCirc � initial state
neg � mux � fbinary� outputg
oddParity � foutput� oParCircg

lexicographic opar��� �
� mux��� �� �


precondition opar�s� l
 � l �� Nil � all binary�l

precondition precondition mux�a� b� c
 � binary�a
 � binary�b
 � binary�c


de�nitions�
one�
 � �
mux��� in�� in�
 � in�
mux�
� in�� in�
 � in�

oParCirc�input
 � opar�initial state�
� 
�input

initial state�
 � State�
�
��

opar�State�r��r��out
� i�Nil
 � State�one�
� out� mux�r�� mux�i� neg�out
� out
� one�



opar�State�r��r��out
� i�input
 input �� Nil �

opar�State�one�
� out� mux�r�� mux�i� neg�out
� out
� one�


� input

output�State�r�� r�� out

 � out

properties�

neg�i
 � mux�i� 
� �

mux�i� �� 

 � i
neg�mux�i� a� b

 � mux�i� neg�a
� neg�b



Figure 
���� Odd parity circuit speci�cation�
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Prove� oddParity�inp� fall binary�inp� � inp �� Nilg � output�oParCirc�inp��

script� simplify� rewrite� expand�oddParity�inp��

� cases from oddParity�inp�

� case inp �� 	
�� �identity
script� simplify� rewrite

� case inp �� 	
�� �identity
script� simplify� rewrite

� case inp �� 
�rest � rest �� Nil

mux�output�opar�State�
� 
� 
�� rest��� 
� 
� frest �� Nil � all binary�rest�g �
output�opar�State�
� 
� 
�� rest��

script� simplify� rewrite� expand�opar�State�
� 
� 
�� rest��

� cases from opar�State�
� 
� 
�� rest�

� case rest �� 	i�� �identity
script� simplify� rewrite

� case rest �� i�input � input �� Nil

output�opar�State�
� 
� 
�� i�input��

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
mux�output�opar�State�
� 
� mux�i� 
� 
��� input��� 
� 
�

script� simplify� reorient� expand�opar�State�
� 
� 
�� i�input��

� cases from opar�State�
� 
� 
�� i�input�

� case input �� Nil� �identity
script� simplify� rewrite

� case input �� Nil

mux�output�opar�State�
� 
� mux�i� 
� 
��� input��� 
� 
�

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
output�opar�State�
� 
� i�� input��

script� simplify� rewrite� reorient� expand�mux�

� cases from mux�i� 
� 
�

� case i �� 


mux�output�opar�State�
� 
� 
�� input��� 
� 
�

finput �� Nil � all binary�input�g � 


output�opar�State�
� 
� 
�� input��

script� simplify� rewrite� expand� add�inductive�hypotheses

� cases from opar�State�
� 
� 
�� input�

� case input �� 	i�� �identity
script� simplify� rewrite

� case input �� i�input
 � input
 �� Nil

output�opar�State�
� 
� 
�� i�input
��

f�i �� 
 � input
 �� Nil � all binary�input
� �

i �� 
 � input
 �� Nil � all binary�input
��g �
mux�output�opar�State�
� 
� i�� input
��� 
� 
�

script� simplify� rewrite� reorient� expand

� cases from opar�State�
� 
� 
�� i�input
�

continued in the next �gure � � �

Figure 
���� Correctness proof for oParCirc� part ��

���



� � � continued from the previous �gure

� cases from opar�State�
� 
� 
�� i�input
�

� case input
 �� Nil� �identity
script� simplify� rewrite

� case input
 �� Nil

output�opar�State�
� 
� mux�i� 
� 
��� input
��

f�i �� 
 � input
 �� Nil � all binary�input
� �

i �� 
 � input
 �� Nil � all binary�input
��g �
mux�output�opar�State�
� 
� i�� input
��� 
� 
�

script� simplify� rewrite� reorient� expand�mux�

� cases from mux�i� 
� 
�

� case i �� 
� �identity
script� simplify� rewrite� rewrite�output�� rewrite

� case i �� 


output�opar�State�
� 
� 
�� input
��

fall binary�input
� � input
 �� Nilg �
mux�output�opar�State�
� 
� 
�� input
��� 
� 
�

script� simplify� rewrite� reorient� expand

� cases from opar�State�
� 
� 
�� input
�

� case input
 �� 	i�� �identity
script� simplify� rewrite

� case input
 �� i�input � input �� Nil

mux�output�opar�State�
� 
� 
�� i�input��� 
� 
�

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
output�opar�State�
� 
� mux�i� 
� 
��� input��

script� simplify� rewrite� reorient� expand

� cases from opar�State�
� 
� 
�� i�input�

� case input �� Nil� �identity
script� simplify� rewrite

� case input �� Nil

output�opar�State�
� 
� mux�i� 
� 
��� input��

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
mux�output�opar�State�
� 
� i�� input��� 
� 
�

script� simplify� rewrite� reorient� expand�mux�

� cases from mux�i� 
� 
�

� case i �� 
� �identity
script� simplify� rewrite� rewrite�output�� rewrite

� case i �� 
� �identity
script� simplify� rewrite

� case i �� 
� �identity �

script� simplify� rewrite

� case inp �� 
�rest � rest �� Nil� �identity
script� simplify� rewrite

Figure 
���� Correctness proof for oParCirc� part ��

���



precedence relations�

eParCirc � epar � fall binary� zero� negg
eParCirc � eInitial state
neg � mux � fbinary� outputg
evenParity � foutput� eParCircg

lexicographic epar��� �
� mux��� �� �


precondition epar�s� l
 � l �� Nil � all binary�l

de�nitions�

zero�
 � 

eParCirc�input
 � epar�eInitial state�
� 
�input


eInitial state�
 � State�
�
� 
 

epar�State�r��r��out
� i�Nil
 �

State� zero�
 � out� mux�r�� zero�
 � mux�i� neg�out
 � out
 



epar�State�r��r��out
� i�input
 finput �� Nilg �

epar�State� zero�
 � out� mux�r�� zero�
 � mux�i� neg�out
� out
 

� input


Figure 
��	� Even parity circuit speci�cation�

���



Prove� evenParity�inp� fall binary�inp� � inp �� Nilg � output�eParCirc�inp��

script� simplify� rewrite� expand�evenParity�inp��

� cases from evenParity�inp�

� case inp �� 	
�� �identity
script� simplify� rewrite

� case inp �� 	
�� �identity
script� simplify� rewrite

� case inp �� 
�rest � rest �� Nil� �identity
script� simplify� rewrite

� case inp �� 
�rest � rest �� Nil

mux�output�epar�State�
� 
� 
�� rest��� 
� 
� frest �� Nil � all binary�rest�g �
output�epar�State�
� 
� 
�� rest��

script� simplify� rewrite� expand

� cases from epar�State�
� 
� 
�� rest�

� case rest �� 	i�� �identity
script� simplify� rewrite

� case rest �� i�input � input �� Nil

output�epar�State�
� 
� 
�� i�input��

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
mux�output�epar�State�
� 
� mux�i� 
� 
��� input��� 
� 
�

script� simplify� reorient� expand

� cases from epar�State�
� 
� 
�� i�input�

� case input �� Nil� �identity
script� simplify� rewrite

� case input �� Nil

output�epar�State�
� 
� mux�i� 
� 
��� input��

f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
mux�output�epar�State�
� 
� i�� input��� 
� 
�

script� simplify� rewrite� reorient� expand�mux�

� cases from mux�i� 
� 
�

� case i �� 


output�epar�State�
� 
� 
�� input�� finput �� Nil � all binary�input�g �

mux�output�epar�State�
� 
� 
�� input��� 
� 
�

script� simplify� rewrite

� case i �� 


output�epar�State�
� 
� 
�� input�� finput �� Nil � all binary�input�g �
output�epar�State�
� 
� 
�� input��

script� simplify� rewrite� expand

� cases from epar�State�
� 
� 
�� input�

continued in the next �gure � � �

Figure 
���� Result of replaying Figure ���
 to verify eParCirc� part ��

���



� � � continued from the previous �gure

� cases from epar�State�
� 
� 
�� input�

� case input �� 	i�� �identity
script� simplify� rewrite

� case input �� i�input
 � input
 �� Nil

output�epar�State�
� 
� 
�� i�input
��

f�i �� 
 � input
 �� Nil � all binary�input
� �

i �� 
 � input
 �� Nil � all binary�input
��g �
output�epar�State�
� 
� mux�i� 
� 
��� input
��

script� simplify� rewrite� reorient� expand

� cases from epar�State�
� 
� 
�� i�input
�

� case input
 �� Nil� �identity
script� simplify� rewrite

� case input
 �� Nil� �identity
script� simplify� rewrite

Replay��� failed

Figure 
��
� Result of replaying Figure ���
 to verify eParCirc� part ��

Replay error �� � ������������������ � case i �� ��
Both initial and �nal states do not match prototype
new� output�epar�State�
� �� 

� input



finput �� Nil � all binary�input
g �
mux�output�epar�State�
� 
� �
� input

� 
� �


old� �identity

Replay error �� �
�� P� evenParity�inp
 fall binary�inp
 � inp �� Nilg � output�eParCirc�inp

�
Closed failed

Figure 
���� Error output from replaying Figure ���
 to verify eParCirc�

���



� case i �� 


output�epar�State�
� 
� 
�� input�� finput �� Nil � all binary�input�g �
mux�output�epar�State�
� 
� 
�� input��� 
� 
�

script� simplify� rewrite� expand� add�inductive�hypotheses

� cases from epar�State�
� 
� 
�� input�

� case input �� 	i�� �identity script� simplify� rewrite

� case input �� i�input
 � input
 �� Nil

mux�output�epar�State�
� 
� 
�� i�input
��� 
� 
�
f�i �� 
 � input
 �� Nil � all binary�input
� �

i �� 
 � input
 �� Nil � all binary�input
��g �
output�epar�State�
� 
� i�� input
��

script� simplify� rewrite� reorient� expand

� cases from epar�State�
� 
� 
�� i�input
�

� case input
 �� Nil� �identity script� simplify� rewrite

� case input
 �� Nil

mux�output�epar�State�
� 
� mux�i� 
� 
��� input
��� 
� 
�
f�i �� 
 � input
 �� Nil � all binary�input
� �

i �� 
 � input
 �� Nil � all binary�input
��g �
output�epar�State�
� 
� i�� input
��

script� simplify� rewrite� reorient� expand�mux�

� cases from mux�i� 
� 
�

� case i �� 
� �identity
script� simplify� rewrite� rewrite�output�� rewrite

� case i �� 


mux�output�epar�State�
� 
� 
�� input
��� 
� 
�
fall binary�input
� � input
 �� Nilg �
output�epar�State�
� 
� 
�� input
��

script� simplify� rewrite� reorient� expand

� cases from epar�State�
� 
� 
�� input
�

� case input
 �� 	i�� �identity script� simplify� rewrite

� case input
 �� i�input � input �� Nil

output�epar�State�
� 
� 
�� i�input��
f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
mux�output�epar�State�
� 
� mux�i� 
� 
��� input��� 
� 
�

script� simplify� rewrite� reorient� expand

� cases from epar�State�
� 
� 
�� i�input�

� case input �� Nil� �identity script� simplify� rewrite

� case input �� Nil

mux�output�epar�State�
� 
� mux�i� 
� 
��� input��� 
� 
�
f�i �� 
 � input �� Nil � all binary�input� �

i �� 
 � input �� Nil � all binary�input��g �
output�epar�State�
� 
� i�� input��

script� simplify� rewrite� reorient� expand�mux�i� 
� 
��

� cases from mux�i� 
� 
�

� case i �� 
� �identity
script� simplify� rewrite� rewrite�output�� rewrite

� case i �� 
� �identity script� simplify� rewrite

Replay��� apparently succeeded

Figure 
���� Repair of correctness proof for eParCirc�
���



precedence relations�

scan � ffword� rwordg � skip � scanskip
ffword� rwordg � scanword
scanword � scanskip

de�nitions�
scan�Nil
 � Nil
scan�ch�s
 � fword�ch�s
�scan�rword�ch�s


fword�Nil
 � Nil
fword�A�c
�s
 � c�fword�s

fword�S�s
 � Nil
rword�Nil
 � Nil
rword�A�c
�s
� rword�s

rword�S�s
 � skip�s

skip�Nil
 � Nil
skip�A�c
�s
 � A�c
�s
skip�S�s
 � skip�s


Figure 
���� Text scanner speci�cation�


���� Breaking a Document into Words

Figure ���� gives a function� scan� which breaks a list of characters �a �document�
 into words�

This function� taken from �Red��a� Fea��� with modi�cations� assumes that words are sequences

of alphanumeric characters A�n
 separated by spaces S� For example�

scan�
A���� S� A���� A����� � 

��� 
�����

illustrates splitting a document into two words� The scan function calls fword to process the

�rst word and rword to process the rest of the document after skipping the �rst word and any

following spaces�

Because both fword and rword both process the �rst word� scan examines each character

twice� A one	pass program can be derived from the speci�cation

scanword�s
 � fword�s
�scan�rword�s



Figure ���� gives the resulting derivation� where an auxiliary function has been introduced to

combine scanning words and skipping leading spaces�

Figure ���� gives a modi�ed version of scan �in which boxes mark the modi�cations
 to �x

two bugs� The �rst bug� identi�ed in �Red��a�� is that documents starting with spaces result

in empty words�

scan�
S� A��
� A��
� S�
 � 
Nil� 
�� ���

���



Focus� scanword�s
 � fword�s
�scan�rword�s



closed with program��
scanword�Nil
 � 
Nil�
scanword�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �c�v

�v�
scanword�S�s�
 � Nil�scanskip�s�

script� simplify� rewrite� expand�fword�s

� close�subsidiary

Focus� scanskip�s
 � scan�skip�s



closed with program��
scanskip�Nil
 � Nil
scanskip�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �c�v

�v�
scanskip�S�s�
 � scanskip�s�

script� simplify� rewrite� expand�skip�s



� cases from skip�s


� case s �� Nil
scanskip�Nil
 � scan�Nil

scanskip�Nil
 � Nil
script� simplify� rewrite

� case s �� A�c
�s�
scanskip�A�c
�s�
 � scan�A�c
�s�

scanskip�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �c�v

�v�
script� simplify� rewrite

� case s �� S�s�
scanskip�S�s�
 � scan�skip�s�


scanskip�S�s�
 � scanskip�s�

script� simplify� rewrite

� cases from fword�s


� case s �� Nil
scanword�Nil
 � Nil�scan�rword�Nil


scanword�Nil
 � 
Nil�
script� simplify� rewrite

� case s �� A�c
�s�
scanword�A�c
�s�
 � �c�fword�s�

�scan�rword�A�c
�s�


scanword�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �c�v

�v�
script� simplify� rewrite

� case s �� S�s�
scanword�S�s�
 � Nil�scan�rword�S�s�


scanword�S�s�
 � Nil�scanskip�s�

script� simplify� rewrite

Figure 
���� Original derivation of scanword�

���



precedence relations�

scan � scanrest � ffword� rwordg � skip � scanskip
ffword� rwordg � scanword
scanword � scanskip

de�nitions�

scan�s
 � scanrest�skip�s


scanrest�Nil
 � Nil
scanrest�ch�s
 � fword�ch�s
�scanrest�rword�ch�s



fword�Nil
 � Nil

fword�A�c
�s
 � A�c
 �fword�s


fword�S�s
 � Nil

fword�L�s
 � Nil

rword�Nil
 � Nil
rword�A�c
�s
 � rword�s

rword�S�s
 � skip�s


rword�L�s
 � skip�s


skip�Nil
 � Nil
skip�A�c
�s
 � A�c
�s
skip�S�s
 � skip�s


skip�L�s
 � skip�s


Figure 
���� Modi�ed scan speci�cation�

The modi�cations �x this by skipping leading spaces before scanning for words� The second

bug is that the speci�cation violates the general principle that output should be legal input�

fword converts A�n
 to the non	character symbol n� These are also �xed by the modi�cations�

In addition� support has been added to treat linefeeds L as spaces�

Replaying the derivation in Figure ���� gives Figure ����� Comparing the old and new

speci�cations of scan leads ReFocus to update the speci�cation of scanword to call scanrest

rather than scan� Because the new program �like the original
 does not contain any precedence

violations� ReFocus accepts it in spite of a number of di�erences� Thus ReFocus constructs the

new derivation without any error messages� This illustrates using replay to update derivations

after �xing speci�cations�

We next consider adding support for a command language in the style of the Unix nroff

text processing system� Assume such commands are denoted by strings starting with a special

marker C and ending with L��� Figure ���
 de�nes a version of scan supporting such commands�

��To process nroff documents� we would modify the input reader to substitute C for periods that begin a line


���



Focus� scanword�s� � fword�s��scanrest�rword�s��
�closed with program	

scanword�Nil� � �Nil

scanword�A�c��s�� � LET v��v� � scanword�s�� IN �A�c��v���v�
scanword�S�s�� � Nil�scanskip�s��
scanword�L�s�� � Nil�scanskip�s��
script� simplify� rewrite� expand�fword�s��
 close�subsidiary

Focus� scanskip�s� � scanrest�skip�s��
�closed with program	

scanskip�Nil� � Nil
scanskip�A�c��s�� � LET v��v� � scanword�s�� IN �A�c��v���v�
scanskip�S�s�� � scanskip�s��
scanskip�L�s�� � scanskip�s��
script� simplify� rewrite� expand�skip�s��

� cases from skip�s�

� case s �� Nil
scanskip�Nil� � Nil
script� simplify� rewrite

� case s �� A�c��s�
scanskip�A�c��s�� � LET v��v� � scanword�s�� IN �A�c��v���v�
script� simplify� rewrite

� case s �� S�s�
scanskip�S�s�� � scanskip�s��
script� simplify� rewrite

� case s �� L�s�
scanskip�L�s�� � scanskip�s��
script� simplify� rewrite

� cases from fword�s�

� case s �� Nil
scanword�Nil� � �Nil

script� simplify� rewrite

� case s �� A�c��s�
scanword�A�c��s�� � LET v��v� � scanword�s�� IN �A�c��v���v�
script� simplify� rewrite

� case s �� S�s�
scanword�S�s�� � Nil�scanskip�s��
script� simplify� rewrite

� case s �� L�s�
scanword�L�s�� � Nil�scanskip�s��
script� simplify� rewrite

Replay��� apparently succeeded

Figure 
���� Result of replaying Figure ���� after �rst set of modi�cations to scan�

��




This version introduces a number of functions �cmd� word� skipcmd� and skipword
 to separate

scanning words from scanning commands�

Because the new version of scan is very di�erent from that in Figure ����� it is not clear

that replay will be successful� Figure ���� shows that it is not� since the expressions marked

by boxes do not call scanword and scanskip� the resulting program still makes two passes over

the input� To derive a one	pass program for the speci�cation in Figure ���
� the user must

introduce more auxiliary functions to combine scanning and skipping for both commands and

words� Thus replay fails in this case because it should fail� despite similarities� the new problem

is not very close to the original�

Discussion

This example illustrates that the success of replay depends on problems having similar solutions�

not on the problems themselves being similar� It also illustrates the importance of automatically

checking the results of derivations� Given the complexity of the program in Figure ����� it

would be easy to miss that replay failed� However� ReFocus notes that the new program

contains precedence violations and so warns that it may not be acceptable by producing the

error messages in Figure ����� Thus while replay fails� ReFocus does not�

As described earlier in this section� one way to repair the derivation is to introduce more

auxiliary functions� However� this makes the derivation complicated because each auxiliary

function must call the others� An alternative approach is to rewrite the speci�cation� Fig	

ure ���� de�nes a version of scan in which state variables are used to describe the object� either

a word or a command� being processed at each moment� The valid states are None� Command�

and Word� Because the structure of this program is closer to the version of scan in Figure �����

replaying the derivation in Figure ���� is successful and gives the derivation in Figures ���� and

����� Since the new program contains no precedence violations� ReFocus accepts it without

any error messages�

���



precedence relations�

scan � scanrest � ffword� rwordg � skip � scanskip
fword � fcmd� wordg
rword � fskipcmd� skipwordg � skip
scanword � scanskip

de�nitions�

scan�s
 � scanrest�skip�s


scanrest�Nil
 � Nil
scanrest�c�s
 � fword�c�s
�scanrest�rword�c�s



fword�C�s
 � C�cmd�s

fword�A�c
�s
 � A�c
�word�s


cmd�Nil
 � Nil
cmd�A�c
�s
 � A�c
�cmd�s

cmd�S�s
 � S�cmd�s

cmd�L�s
 � Nil

word�Nil
 � Nil
word�C�s
 � Nil
word�A�c
�s
 � A�c
�word�s

word�S�s
 � Nil
word�L�s
 � Nil

rword�C�s
 � skipcmd�s

rword�A�c
�s
 � skipword�s


skipcmd�Nil
 � Nil
skipcmd�L�s
 � skip�s

skipcmd�A�c
�s
 � skipcmd�s

skipcmd�S�s
 � skipcmd�s


skipword�Nil
 � Nil
skipword�C�s
 � C�s
skipword�A�c
�s
 � skipword�s

skipword�S�s
 � skip�s

skipword�L�s
 � skip�s


skip�Nil
 � Nil
skip�S�s
 � skip�s

skip�L�s
 � skip�s

skip�C�s
 � C�s
skip�A�c
�s
 � A�c
�s

Figure 
���� Initial version of scan supporting commands�

���



Focus� scanword�s� � fword�s��scanrest�rword�s��
�closed with program	

scanword�C�s�� � �C�cmd�s����scanrest�skipcmd�s���
scanword�A�c��s�� � �A�c��word�s����scanrest�skipword�s���
script� simplify� rewrite� expand�fword�s��
 close�subsidiary

Focus� scanskip�s� � scanrest�skip�s��
�closed with program	

scanskip�Nil� � Nil
scanskip�S�s�� � scanskip�s��
scanskip�L�s�� � scanskip�s��
scanskip�C�s�� � �C�cmd�s����scanrest�skipcmd�s���
scanskip�A�c��s�� � �A�c��word�s����scanrest�skipword�s���
script� simplify� rewrite� expand�skip�s��

� cases from skip�s�

� case s �� Nil
scanskip�Nil� � scanrest�Nil�
scanskip�Nil� � Nil
script� simplify� rewrite

� case s �� S�s�
scanskip�S�s�� � scanrest�skip�s���
scanskip�S�s�� � scanskip�s��
script� simplify� rewrite

� case s �� L�s�
scanskip�L�s�� � scanrest�skip�s���
scanskip�L�s�� � scanskip�s��
script� simplify� rewrite

� case s �� C�s�
scanskip�C�s�� � scanrest�C�s��

scanskip�C�s�� � �C�cmd�s����scanrest�skipcmd�s���

script� simplify� rewrite

� case s �� A�c��s�
scanskip�A�c��s�� � scanrest�A�c��s��

scanskip�A�c��s�� � �A�c��word�s����scanrest�skipword�s���

script� simplify� rewrite

� cases from fword�s�

� case s �� C�s�
scanword�C�s�� � �C�cmd�s����scanrest�rword�C�s���

scanword�C�s�� � �C�cmd�s����scanrest�skipcmd�s���

script� simplify� rewrite

� case s �� A�c��s�
scanword�A�c��s�� � �A�c��word�s����scanrest�rword�A�c��s���

scanword�A�c��s�� � �A�c��word�s����scanrest�skipword�s���

script� simplify� rewrite

Replay��� failed

Figure 
��	� Result of replaying Figure ���� after �rst attempt at introducing commands�

���



Replay error �� � ���������� � case s �� C�s��
Both initial and �nal states do not match prototype
new� scanskip�C�s�
 � �C�cmd�s�

�scanrest�skipcmd�s�



violations� fscanskip �� cmd� scanskip �� skipcmd� scanskip �� scanrestg
old� scanskip�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �A�c
�v

�v�

violations� none

Replay error �� � ���������� � case s �� A�c
�s��
Both initial and �nal states do not match prototype
new� scanskip�A�c
�s�
 � �A�c
�word�s�

�scanrest�skipword�s�



violations� fscanskip �� word� scanskip �� skipword� scanskip �� scanrestg
old� scanskip�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �A�c
�v

�v�

violations� none

Replay error �� � �������� � case s �� C�s��
Both initial and �nal states do not match prototype
new� scanword�C�s�
 � �C�cmd�s�

�scanrest�skipcmd�s�



violations� fscanword �� cmd� scanword �� skipcmd� scanword �� scanrestg
old� scanword�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �A�c
�v

�v�

violations� none

Replay error �� � �������� � case s �� A�c
�s��
Both initial and �nal states do not match prototype
new� scanword�A�c
�s�
 � �A�c
�word�s�

�scanrest�skipword�s�



violations� fscanword �� word� scanword �� skipword� scanword �� scanrestg
old� scanword�A�c
�s�
 � LET v
�v� � scanword�s�
 IN �A�c
�v

�v�

violations� none

Figure 
���� Error messages for the failed replay in Figure �����
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precedence relations�

scan � scanrest � ffword� rwordg � skip � scanskip
ffword� rwordg � scanword
scanword � scanskip

de�nitions�
scan�s
 � scanrest�skip�s


scanrest�Nil
 � Nil
scanrest�c�s
 � fword�c�s� None
�scanrest�rword�c�s� None



fword�C�s� None
 � C�fword�s� Command

fword�A�c
�s� None
 � A�c
�fword�s� Word


fword�Nil� Command
 � Nil
fword�A�c
�s� Command
 � A�c
�fword�s� Command

fword�S�s� Command
 � S�fword�s� Command

fword�L�s� Command
 � Nil

fword�Nil� Word
 � Nil
fword�C�s� Word
 � Nil
fword�A�c
�s� Word
 � A�c
�fword�s� Word

fword�S�s� Word
 � Nil
fword�L�s� Word
 � Nil

rword�C�s� None
 � rword�s� Command

rword�A�c
�s� None
 � rword�s� Word


rword�Nil� Command
 � Nil
rword�L�s� Command
 � skip�s

rword�A�c
�s� Command
 � rword�s� Command

rword�S�s� Command
 � rword�s� Command


rword�Nil� Word
 � Nil
rword�C�s� Word
 � C�s
rword�A�c
�s� Word
 � rword�s� Word

rword�S�s� Word
 � skip�s

rword�L�s� Word
 � skip�s


skip�Nil
 � Nil
skip�S�s
 � skip�s

skip�L�s
 � skip�s

skip�C�s
 � C�s
skip�A�c
�s
 � A�c
�s

Figure 
��
� Revised scan speci�cation supporting commands�
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Focus� scanword�s� state
 � fword�s� state
�scanrest�rword�s� state



closed with program��
scanword�C�s�� None
 � LET v
�v� � scanword�s�� Command
 IN �C�v

�v�
scanword�A�c
�s�� None
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
scanword�Nil� Command
 � 
Nil�
scanword�A�c
�s�� Command
 � LET v
�v� � scanword�s�� Command
 IN �A�c
�v

�v�
scanword�S�s�� Command
 � LET v
�v� � scanword�s�� Command
 IN �S�v

�v�
scanword�L�s�� Command
 � Nil�scanskip�s�

scanword�Nil� Word
 � 
Nil�
scanword�C�s�� Word
 � LET v
�v� � scanword�s�� Command
 IN Nil��C�v

�v�
scanword�A�c
�s�� Word
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
scanword�S�s�� Word
 � Nil�scanskip�s�

scanword�L�s�� Word
 � Nil�scanskip�s�

script� simplify� rewrite� expand�fword�s

� close�subsidiary

Focus� scanskip�s
 � scanrest�skip�s



closed with program��
scanskip�Nil
 � Nil
scanskip�S�s�
 � scanskip�s�

scanskip�L�s�
 � scanskip�s�

scanskip�C�s�
 � LET v
�v� � scanword�s�� Command
 IN �C�v

�v�
scanskip�A�c
�s�
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
script� simplify� rewrite� expand�skip�s



� cases from skip�s


� case s �� Nil� scanskip�Nil
 � Nil
script� simplify� rewrite

� case s �� S�s�
scanskip�S�s�
 � scanskip�s�

script� simplify� rewrite

� case s �� L�s�
scanskip�L�s�
 � scanskip�s�

script� simplify� rewrite

� case s �� C�s�
scanskip�C�s�
 � LET v
�v� � scanword�s�� Command
 IN �C�v

�v�
script� simplify� rewrite

� case s �� A�c
�s�
scanskip�A�c
�s�
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
script� simplify� rewrite

� cases from fword�s� state


continued in the next �gure � � �

Figure 
���� Result of replaying Figure ���� after introducing states� part ��

���



� � �continued from the previous �gure

� cases from fword�s� state


� case state �� None � s �� C�s�
scanword�C�s�� None
 � LET v
�v� � scanword�s�� Command
 IN �C�v

�v�
script� simplify� rewrite

� case state �� None � s �� A�c
�s�
scanword�A�c
�s�� None
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
script� simplify� rewrite

� case state �� Command � s �� Nil
scanword�Nil� Command
 � 
Nil�
script� simplify� rewrite

� case state �� Command � s �� A�c
�s�
scanword�A�c
�s�� Command
� LET v
�v� � scanword�s�� Command
 IN �A�c
�v

�v�
script� simplify� rewrite

� case state �� Command � s �� S�s�
scanword�S�s�� Command
 � LET v
�v� � scanword�s�� Command
 IN �S�v

�v�
script� simplify� rewrite

� case state �� Command � s �� L�s�
scanword�L�s�� Command
 � Nil�scanskip�s�

script� simplify� rewrite

� case state �� Word � s �� Nil
scanword�Nil� Word
 � 
Nil�
script� simplify� rewrite

� case state �� Word � s �� C�s�
scanword�C�s�� Word
 � LET v
�v� � scanword�s�� Command
 IN Nil��C�v

�v�
script� simplify� rewrite

� case state �� Word � s �� A�c
�s�
scanword�A�c
�s�� Word
 � LET v
�v� � scanword�s�� Word
 IN �A�c
�v

�v�
script� simplify� rewrite

� case state �� Word � s �� S�s�
scanword�S�s�� Word
 � Nil�scanskip�s�

script� simplify� rewrite

� case state �� Word � s �� L�s�
scanword�L�s�� Word
 � Nil�scanskip�s�

script� simplify� rewrite

Replay��� apparently succeeded

Figure 
���� Result of replaying Figure ���� after introducing states� part ��

���



��
 Conclusion

The main purpose of this chapter has been to show the results of applying ReFocus on a

number of examples� These include the examples from the preceding chapters� examples from

published papers� and moderately	sized examples� This establishes that ReFocus can solve

the issues raised in the preceding chapters� At the same time� we have explored some of the

limitations of ReFocus and identi�ed ways to improve robustness�

A secondary purpose has been to demonstrate the usefulness of replay� While it may seem

obvious that replay is a useful tool� an implementation is needed before conclusions can be

drawn� ReFocus is only a prototype� but it does illustrate that replay is useful on �at least


moderately	sized problems� In particular� both the circuit	validation and text scanner examples

show that replay can signi�cantly reduce the user�s workload�

While the examples show that replay is useful� they are a long way from demonstrating

that the transformational implementation model is superior to traditional program develop	

ment methods� In our experiences with Focus� it takes much longer to derive a program than

to write it by hand� so it is not yet cost	e�ective to use such systems to maintain software�

Transformational implementation is relatively new� and much work is needed on theory� tools

and methods before it becomes a practical way to develop systems� Analyzing the useful	

ness of replay as a program maintenance tool must wait until more mature transformational

implementation systems are available�

Though this work does not prove that replay simpli�es maintaining real programs� it does

succeed in showing that replay is useful� All of the present researchers in the Focus group use

replay to help develop derivations� Though speci�cations may be easier to modify and debug

than implementations� they are not very easy to write� It is rare that an initial attempt is

complete and free of errors� Constructing derivations often reveals problems such as missing

preconditions or omitted cases� Replay allows the user to reconstruct a derivation after mod	

ifying the speci�cation so that discovering an error does not mean starting over� Thus this

research shows that replay is useful even in today�s systems�
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Chapter 


Conclusion

The transformational implementation model is a promising� though radical� solution to the

problem of increasing the amount of automation in software development� In this paradigm�

the user writes a formal speci�cation and then applies equivalence	preserving rules to derive an

e�cient implementation� One bene�t is increased consistency� Assuming the rules and inference

engine are sound� the derived implementation will be consistent with its speci�cation� A second

bene�t is simpli�ed maintenance� Because there is a formal link between a speci�cation and

its implementation� the user can make changes to the speci�cation and replay the derivation

to recreate the implementation� A third bene�t is design reuse� Since problems often share an

underlying structure� replay can be used to apply the solution from one problem to another�

This research con�rms the usefulness of replay and proposes solutions to some of the problems

which arise�

Program development systems�or more generally� proof development systems�can be clas	

si�ed by how search is controlled� In automated systems� such as �Bha��� Car��� HA��� KW���

Sil��� Vel���� the system controls search� The task of the user is to specify what problem is to

be solved� In interactive systems� such as �Con��� Gor��� Pau��� Red��a�� search is controlled

by the user� The task of the system is to ensure that only sound inferences are made�

These two types of systems use replay in di�erent ways� In automated systems� replay is used

for speedup� by reusing derivations� signi�cantly less search is needed to solve new problems�

Besides �nding solutions more quickly� replay can often �nd solutions to large problems for

which standard search would exceed resource limits� Most work on replay falls into this category

�Bax��� Bha��� Car��� HA��� KW��� Sil��� Vel���� In interactive systems� on the other hand�

replay is used to increase automation� by reusing derivations constructed by the user� the

system is able to �nd solutions automatically even though it has no search control mechanism

of its own� The replay mechanism described in this thesis falls into this second category� In

���



contrast to replay in automated systems� little work has been done on replay in interactive

systems�

Replay in interactive systems has a number of characteristics that di�erentiate it from replay

in automated systems� One is the need for 
exibility� When the user invokes replay� both the

target and prototype are speci�ed� implying that the two problems are similar� Thus replay must

identify the similarities and apply the appropriate portions of the prototype derivation to the

new problem� In contrast� replay in automated systems usually selects the prototype� so failing

to identify similarities simply means that another prototype should be selected� Furthermore�

if all else fails� the system can resort to search� Thus �exibility is a less important issue in

automated systems�

A second di�erence is in how replay is applied� In interactive systems� replay can be used

both to apply solutions to new problems and to repeat derivations after making modi�cations

to speci�cations� In automated systems� replay is only useful for solving new problems� This

means that replay in interactive systems is more likely to be applied when the di�erences

between the problems are minor�

A third� and perhaps the most important di�erence� is the scope of the system� Research

suggests that general problem solvers do not exist� cf� �RW���� Thus automated systems must

be built to solve problems in speci�c domains� For instance� a system may be designed to isolate

variables in certain classes of equations �Sil��� or to construct programs in restricted domains

�Bha���� But because interactive systems rely on the user for search control� they can be more

general� This means that replay must be applicable to an equally wide range of problems� It

also means that goals are not clearly de�ned� making it more di�cult to determine success or

failure�

This thesis identi�es several issues which must be addressed by replay in interactive systems�

One issue is that the inference system should provide large�grained operations� Operations which

refer to the details of the speci�cation are too brittle and so likely to fail during replay� Large	

grained operations promote �exibility� A second issue is di�erence propagation� Since the user

must remain in control� operations cannot be so large	grained that they are not at all speci�c

to the problem� Thus there are always references to the speci�cation in the derivation history�

To increase �exibility� replay must update the operations to refer to the new problem� A third

issue is acceptance testing� Replay must determine success or failure so that the user does not

need to check results manually� Because the goals of derivations in interactive systems are

poorly de�ned� an important part of implementing replay is identifying ways to test results

for acceptability� A �nal issue is recovery from failure� For �exibility� replay should attempt

to reapply as much from the prototype�s derivation history as possible before halting� This

can range from simply switching between subproblems after failure to repairing derivations by

��




identifying missing or unnecessary steps� Our experience in implementing replay suggests that

these are the key problems of incorporating replay into interactive systems�

Because they are connected so closely to the underlying proof development system� the �rst

and fourth issues �grain size and recovery from failure
 do not permit general solutions� On the

other hand� propagating di�erences and testing for acceptability are more general problems�

The bulk of this thesis presents our solution to propagating di�erences� This is done by using

second	order generalization to construct syntactic analogies� We give a formal de�nition of

second	order generalization and show that it is computable� We then identify a useful subset

of such generalizations and give a reasonably e�cient algorithm to compute them�

The remainder of this thesis describes a heuristic for testing the acceptability of program

derivations in transformational implementation systems� We show that term orderings can be

used to measure progress by identifying the parts of equations which block them from being

oriented as rewrite rules� This gives a test which is more robust than simply expecting exact

matches�

The following sections discuss the contributions this thesis makes to uni�cation theory�

analogical reasoning� and formal program development�

��� Contributions to Uni�cation Theory

Abstractly� uni�cation is the process of solving equations by �nding term substitutions for vari	

ables� Uni�cation is important to many areas of computer science� including theorem proving

�Rob�
�� programming languages �KK��� Kow���� and rewriting �DJ��� KB���� The complemen	

tary problem� generalization� is the process of identifying commonalities between sets of terms

�empirical induction
 by introducing variables to abstract dissimilar subterms �Plo��� Rey����

The main application of generalization is in machine learning �Fal��� FP��� Hal��� MCM���

MCM��� Owe��� Plo���� but generalization has also been applied to other problems such as

type inference �NP��� and constructing programs �Bau��� Pla���� This thesis�speci�cally� the

work on second	order generalization�contributes to uni�cation theory by extending it in a

number of directions�

The main contribution of this thesis is the analysis of second	order generalization in Chap	

ters 
 and �� While higher	order uni�cation has been de�ned for some time �Hue�
� PJ����

higher	order generalization has not received much attention� The obvious approach� using the

substitution ordering to de�ne maximally instantiated terms� does not give useful results be	

cause second	order substitutions are too �exible and so too many terms are instances of each

other� Instead� we base generalization on uniquely minimal complete sets of generalizations as

de�ned in Chapter 
� We then show that uniquely minimal complete sets of generalizations

exist for terms over monadic function symbols �Theorem 
���
 but not for the obvious extension

���



for polyadic functions �Theorem 
���
� However� we show that the sets do exist when terms

are restricted so that substitution preserves data �Theorem 
���
� We also identify restrictions

on the variables that can occur in generalizations and give a natural algorithm �
���
 for com	

puting such generalizations� Finally� in Chapter � we identify a useful subset of generalizations

based on maximizing their size and give a polynomial	time algorithm for computing this subset�

Thus this thesis contributes to uni�cation theory by analyzing many aspects of second	order

generalization�

A second contribution to uni�cation theory is the use of categorical combinators �Cur��� to

represent second	order terms �Section 
����
� �Bel��� shows that using categorical combinators

has the advantage of allowing second	order matching to be expressed as �rst	order matching

modulo the theory of categorical products� Our work shows that the categorical notation has the

advantage of providing a natural basis for restricting terms so that second	order generalizations

exist� The connection between generalization and uni�cation suggests that other forms of

categorical combinators may lead to improvements in uni�cation�

��� Contributions to Analogical Reasoning

Analogical reasoning is the process of reusing solutions �cf� �Pol
��
� In his survey of computa	

tional approaches to analogy� Hall �Hal��� identi�es four components of analogical reasoning�

� recognition� �nding a candidate prototype�

� elaboration� constructing analogical maps from the prototype to the target�

� evaluation� justifying� extending� and re�ning the analogical maps� and

� consolidation� putting the analogical maps into a form that is applicable to other prob	

lems�

While a more thorough treatment of evaluation and consolidation is left as future work�� this

thesis contributes to analogical reasoning by providing a tool�second	order generalization�for

implementing the second component� elaboration�

We describe a novel approach to constructing analogical maps based on syntactic informa	

tion� As described in Chapter �� this follows the work of �Coo��a� Coo��b� Eva��� FFG���

Fal��� Owe��� and others in using syntactic information to constrain analogy� In Chapters 


and �� we show how to construct analogical maps by �nding their second	order generalization

and pairing the substitutions� We then show that because these maps abstract common sub	

terms� they are useful for transferring information between program derivations� This provides

�Recognition is not an issue when replaying derivations in an interactive environment� the user is responsible
for �nding an appropriate prototype


���



a very simple but �exible model of analogical reasoning based purely on syntactic information�

Furthermore� because the model does not depend on the underlying proof development system�

incorporating it into other systems should not require major e�ort�

While this thesis applies second	order generalization only to replaying derivations� we be	

lieve this technique is applicable to other problems as well� For example� it could be applied

to identifying di�erences between versions of programs at a more abstract level than that of

characters� This might provide help� say� in �nding recently	introduced errors in programs by

directing a reviewer�s attention to signi�cant changes in code �LS���� Furthermore� second	order

generalization�s ability to �nd close matches should be applicable to several problems� One is

detecting plagiarism on programming assignments �Gri���� by comparing key functions in pro	

grams� second	order generalization can suggest which solutions may not be original� A second

application is reusing code stored in a library �NTFT���� Current transformational implemen	

tation systems are too weak to solve large problems� but formal methods can be introduced into

software development almost immediately by creating libraries of speci�cations and implemen	

tations� The di�culty is that no two programmers are likely to specify a problem in precisely

the same way� After writing a speci�cation� a programmer could use second	order generaliza	

tion to �nd the closest matches in the library and then incorporate the implementation in the

system being developed�

��� Contributions to Formal Program Development

Balzer� Cheatham� and Green �BCG��� suggest that the ability to maintain speci�cations rather

than implementations is one of the primary advantages of developing programs formally� Rather

than modifying code� programmers�or possibly even end users in restricted domains�can

modify speci�cations and use replay to recreate programs with minimal e�ort� This should be

an improvement because speci�cations appear to be easier to modify� leading to introducing

fewer errors during maintenance� While much has been accomplished� signi�cant research is

needed before this paradigm is realized� More powerful tools are needed to handle larger

and more abstract speci�cations� support more e�cient implementations� and provide more

assistance to the developer� However� even though a full evaluation of the usefulness of replay

must wait until more powerful systems are available� this thesis does show that building an

e�ective replay mechanism is feasible�

The primary contribution of this thesis to formal program development is a practical demon	

stration of the replayability of program derivations� In Chapter �� we outline the requirements

of an e�ective replay system� In Chapter �� we describe Focus and its replay mechanism� ReFo	

cus� In Chapter �� we give a method for using syntactic analogy to transfer information between

derivations� In Chapter �� we apply ReFocus to a number of examples� Thus in contrast to
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previous work on replay in interactive environments �Gol��� MB��� MF��� SM�
� Ste��� Wil����

we give a complete� robust implementation of replay� This justi�es one of the basic assumptions

of �BCG��� and others� replaying derivations is both feasible and useful�

A second contribution to formal program development is the application of term orderings

to acceptance testing� It is not su�cient to simply replay derivations� the system must also

verify that the resulting program meets the user�s goals� In Chapter �� we give a heuristic

for checking acceptability using term orderings� These are orderings used in rewrite	based

systems� such as Focus� to ensure that rewriting terminates� By verifying that each rewrite

rule is consistent with a well	founded ordering� we can show that any sequence of rewrites

will terminate� This thesis shows that term orderings can also be used to capture information

about goals� Because the di�erence between speci�cations and programs is that speci�cations

are unorientable� derivations make progress by removing subterms which block orientation�

Comparing sets of such terms� known as precedence violations� gives a metric for measuring

progress during replay� Because term orderings are already used in the system� this test has

the advantage that the user does not need to enter additional information� The alternative�

requiring the user to specify the expected form of the resulting program �Wil���� imposes a

signi�cant burden on the user�

Finally� this research shows that an e�ective replay mechanism does not require a detailed

analysis of derivations� In contrast� the methods described in �Car��� Vel��� are based on de	

tailed information such as what rules were applied and which search paths were examined and

rejected� Such extensive information provides a complete picture of constructing derivations�

and theoretically should allow derivations to be replayed without failure� However� analyz	

ing such large amounts of information is time	consuming� di�cult to implement� and strongly

dependent on the implementation of the underlying theorem prover� The implementation of

replay described in Chapter �� ReFocus� depends little on the details of the underlying sys	

tem� Focus� Instead� ReFocus uses second	order generalization to compare the terms in the

prototype and target derivations� Because these methods depend only on information in the

scripts and speci�cations� they can also be applied to other program development�and proof

development�systems� Adding application	speci�c knowledge can improve replay� but this the	

sis shows that even a simple replay mechanism improves the process of developing programs �or

proofs
 by allowing the user to backtrack and recreate them after improving the speci�cation�

��� Future Work

Many researchers �BCG��� Dar��� Fic�
� Red��a� SS��� Wil��� have suggested that replay

provides the key to permitting reuse of designs rather than implementations� But before we

can claim this thesis is proven� program	development systems need to be improved to handle
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much larger problems� Until such systems are built� the usefulness of replay as a general

development tool for real applications cannot be con�rmed� When� and if� such systems are

built� this thesis needs to be tested more completely�

A second area for future work is to improve the construction and application of analogical

maps� While this thesis demonstrates that syntactic analogies constructed from second	order

generalizations can transform expressions successfully in small examples� a more complete treat	

ment of analogical reasoning should improve robustness� In presenting an algorithm for con	

structing analogical maps based on second	order generalization� this thesis considers only the

elaboration component of analogical reasoning� A complete treatment of analogical reasoning

in replay must also consider evaluation and consolidation �Hal���� The evaluation mechanism

described in this thesis is simplistic� apply the analogical maps and let replay tell the user if

it fails� Failures could be used to re�ne the analogical maps� type information could be used

to ensure that transformed terms are well	formed� and transformed subterms could be re�ned

to ensure they match some part of the new term� The consolidation mechanism is even more

simplistic� analogical maps are simply stored and reused without any concern for interactions

with other maps� The system should use historical information to ensure that new analogical

maps are either consistent with or orthogonal to old ones� These issues are not considered in

this thesis to avoid obscuring the usefulness of second	order generalization� but a more complete

treatment of analogical reasoning would be important to improving replay�s robustness�

A third area for future work is to apply second	order generalization to other problems� We

have suggested that it might be useful as a program di�erence tool� but there are probably

other domains with rich term structures for which second	order generalization would be useful�

A fourth area is to investigate the connection between linear logic and uni�cation� This may

lead to identifying new classes of terms for which higher	order uni�cation is decidable� Work

such as �Far��� Mil��� MN��� Pre��� identify a number of useful classes� but most of these are

based on higher	order patterns� Since patterns are very restricted� it is likely that other classes

will give useful results�

Finally� a �fth area is to extend generalization in three directions� First� the restrictions on

maximally speci�c condensed generalizations should be re�ned� The restriction against adjacent

variables should be loosened to allow terms from distinct domains to have useful generaliza	

tions without using the �n notation� Also� the restriction against functions returning pair

types should be relaxed� Analysis of the proof for Theorem 
��� in Section B�� suggests that

this restriction is stronger than necessary� Second� the de�nition of second	order generalization

should be extended to generalize types as well as terms� This can probably be done by applying

the methods of �Pfe���� Types provide powerful restrictions� and generalizing types may help

the number of ambiguous or incorrect transform rules� They can also help by constraining

which symbols are matched when generalizing terms from distinct domains� Third� generaliza	

���



tion should be extended to higher orders� This would allow it to be applied to programming

languages with higher	order type systems� It would also allow generalization to capture such

concepts as switching the order in which functions are applied� Since matching terms appar	

ently plays a key role in generalization� the fact that third and fourth	order matching have been

found to be decidable �Dow��� Hue��� suggests that properly	de�ned higher	order generaliza	

tion may be decidable as well� Generalizing types and higher	order terms will likely lead to

even more powerful tools for syntactic analogies in domains with rich term structure�

���



Appendix A

Generalization of Cartesian

Combinator Terms

We prove

Theorem ���� Given cartesian combinator terms a� b � TX�Y � there is no subset of G�a� b


satisfying De�nition 
���

Proof Let g be

a �
���

fha� bi
���� � b

Also� let Gg�a� b
 be the subset ofG�a� b
 reachable from g� and let g� be h�� � t� a� �� � t� bi�

If � � g � g�� then ��f
 must be of the form fs where � appears at least once in s in a string

of the form

h��� � � �h��n�hh��� � � � h��n�h� � � hhm�� � � �hm�nm� � � �i � � �ii

Furthermore� for each hi�j � ���hi�j
 must either be a projection �if the variable is applied to a

pair
 or � �if the variable is applied to another variable
� Likewise for �� and ��� noting that if

���h
 � �� then ���h
 � �� Finally� let

�� � fh �� � j h �� � � �� � ��g � fh �� hh��� �i j h �� �� � �� or h �� � � ��g

Then the generalization term of ����g
 is of the form

f �hh�h� � �hmha��i � � � ��i� h
�
�h�� � � �h

�
nh�� bi � � �ii

where the ��s are arbitrary terms� and so ff � �� f ��hf ��h�� c!i� f ��hc!� �ii is always a morphism

from ����g
 to some g�� in Gg�a� b
� Furthermore� g�� �� g since no generalization morphism can

���



reduce the number of occurrences of f �� in g��� Thus there is no subset of Gg�a� b
 �and so of

G�a� b

 satisfying the minimality condition of De�nition 
��� �

Since this proof does not depend on duplication� we have actually shown

Corollary A�� Given a
ne combinator terms a� b � TX�Y � G�a� b
 is not well	de�ned�

where the a�ne combinators are as de�ned in Section 
�
�

���



Appendix B

Results for Relevant Combinator

Terms

We show the following�

� matching relevant combinator terms is decidable�

� generalization over relevant combinator terms is well	de�ned� and

� Algorithm 
��� is correct�

We assume the notation of Chapter 
� In particular� recall

yn � y� � �y� � � ��yn�� � yn



and the de�nitions of T �terms
� R �all relevant restructors� 
���
� and A �associative restruc	

tors� 
���
� In addition� we de�ne AI �associative restructors with insertions
 as the set of

restructors generated by the production

A ��� � j � j ��� j 	�� j ��� j AA j A �A

and AC �associative	commutative restructors
 as the set of restructors generated by the pro	

duction

X ��� � j � j � j ��� j XX j X �X

Like T � R� A� AI� and AC can be indexed�

RX�Y � R � TX�Y

AX�Y � A � TX�Y

AIX�Y � AI � TX�Y

���



ACX�Y � AC � TX�Y

Furthermore� we de�ne a reduced form for terms such that any occurrences of restructors

are at the �leaves� of terms�

De
nition B�� Term s � TA�B is in restructor�reduced form if s does not contain any sub	

terms of the form �p �� q
t� �t� t�� t�p �� p
� or �p� �� q�
 � �p� �� q�
�

Because the return type of a variable or function cannot be a pair or u�

Lemma B�� For each t � TA�B � there is an s � TA�B in restructor	reduced form such that

s � t�

The restriction against return types being u ensures that there are no terms of the form ��t � y


where y � Vu�u � One use of restructor	reduced form is to de�ne the size of a term�

De
nition B�� The size of a term t in restructor	reduced form is de�ned as

jtj �

��
� � � jrj� jsj if t � rs or t � r � s

� otherwise

For a term s not in restructor	reduced form� de�ne jsj by jsj � jtj where t is a term in restructor	

reduced form such that s � t�

B�� Matching Relevant Combinator Terms

Because we assume that the result types of variables and constants are not pairs� matching

relevant combinator terms is similar to matching second	order 		terms �HL���� We present an

algorithm and show its correctness�

The following algorithm maintains a set of disagreement pairs D consisting of the terms that

have not yet been matched� Each pair in the set is given as s
�
� t� where t does not contain

any free variables� We assume that all terms s and t are in restructor	reduced form� Initially

we have the pair �� � fs
�
� tg
� and if there is an appropriate substitution� the algorithm will

terminate with �� � �
 such that fx �� r � � j x � FV�s
g � s � t� Note that the algorithm is

nondeterministic� so more than one such � may be returned�

��




Algorithm B��

Delete
� � t

�
� t � D

� �D

Decompose�Comp
� � fs�s�

�
� t�t�g � D

� � fs�
�
� t�� s�

�
� t�g � D

Decompose�Pair
� � fs� � s�

�
� t� � t�g � D

� � fs�
�
� t�� s�

�
� t�g � D

Match
� � �xs

�
� t
 � D r � pre�xx�t


fx �� rg � � � fx �� rg�f�xs� t
g � D


where pre�xx returns all the substitutions for x which may make the diagram

A
t � C

�
�
�
�
�

s

R �
�
�
�
�

x
�

B

commute� That is�

pre�xx�t
 �

�
��������
�������

f� j � � RB�Cg

fK �� ym � j �� � AIX ��Y � m � n�

and � � RB�Xg

if t � K �rn for K � CY�C

and � � AY ��Y

where each yi is a fresh variable�� Note that K�rn and K��ym� are not in restructor	reduced

form� The substitution x �� K��ym� is illustrated by the diagram in Figure B���

While expensive� pre�xx is computable because

Observation B�� For any types X and Y � RX�Y is �nite�

B���� Correctness

We show that Algorithm B�� is correct� that is� we show

�Using the terminology of �HL���� the �rst substitution corresponds to projection� and the second to imitation


���



A
rn � Y � � � Y

K � C

�
�
�
�
�
�
�
�
�
�
�

s

R 
























x

�

X �

�
��

X

�
ym

B

�
�

Figure B��� Substitution for x when t � K�rn�

Theorem B�	 �Soundness� Given s� t � TX�Y � if Algorithm B�� halts with h
� �i� then


 � s� t�

Theorem B�� �Completeness� Given s� t � TX�Y � if � � s� t� then there is a sequence of

rule applications such that Algorithm B�� halts with h��� �i for � �� ���

and

Theorem B�
 �Termination� Algorithm B�� terminates for all sequences of rule applica	

tions�

Soundness follows from the observation that the algorithm maintains the invariant

�
 � 
�a�
 � b� � � � 
�ak
 � bk� 
���s

 � t

where ��� fa�
�
� b�� � � � � ak

�
� bkg
 is the result of some sequence of rule applications� Com	

pleteness follows from Lemma B��� Finally� termination follows from a lexicographic ordering

based on the sizes of terms� the number of pairs of the form xt
�
� b� and the number of free

variables� Assume jSj denotes the size of set S� and let

Sb �
X

a
�
�b�D

jbj

F � jfxr
�
� b � D j x is a free variablegj

V �
X

a
�
�b�D

jFV�a
j

���



Then we show termination by the lexicographic ordering on

hSb� F � Vi

Applying Delete� Decompose�Comp� or Decompose�Pair reduces Sb� Applying x �� K �ym �

reduces F � Applying x �� � either reduces F or leaves F unchanged �such as when � � � and

the �rst symbol of s is a free variable
� In either case� applying x �� � always reduces V � Thus

Algorithm B�� terminates for all s� t � TX�Y �

B�� Existence of Generalizations

We prove

Theorem ���
 If a� b � TX�Y are relevant combinator terms� then MSG�a� b
 exists�

In this section� we assume that all terms are in restructor	reduced form� The proof is patterned

after 
��� in that we show the subset of G�a� b
 de�ned in 
����G��a� b
� satis�es the conditions

of Theorem 
���� The key is the observation

Observation B�� If a constant or free variable H occurs n times in t and p �� q is in TB�C

�where t � TA�B
� then there is an s � �p �� q
 t such that H occurs n or more times in s�

This is used to show

Lemma B��� G��a� b
 is �nite�

Proof Let g� � h�� � s � a� �� � s� bi be a generalization in G��a� b
� By Observation B���

jaj and jbj bound the number of constants that can appear in s� Also� jaj and jbj and the

requirement that ���x
 �� ���x
 bound the number of free variables in s� Finally� the types

of the constants and free variables bound the number of terms of the form p �� q in s� Thus

G��a� b
 is �nite� �

Next we show that all morphisms to any generalization in G��a� b
 are unique� Let �� �� �

g� � g� be in G�a� b
 where g� is in G��a� b
� If g� � h
� � t � a� 
� � t � bi� then we must

show that � � �� in the picture

s

��
�
�
�
�

��
�
�
�
�
�

��

R
a �


�
t

�

��

��


� � b

���



Let s be s�fr� for some r where f is the leftmost� outermost variable in s such that ��f
 �� ���f
�

By Observation B��� there must be a subterm t� in t such that ��fr
 � t� � ���fr
�

First we show

Lemma B��� ��f
 �� R�

Note that this lemma does not hold if the output type of variable can be a pair� the diagram

ff �

��
�
�
�
�

��� ��
�
�
�
�
�

��� ��

R
� �

��� ��
gh
�

�

��� �� � �

commutes for both � � ��� �gh� and � � �gh� ��� violating the uniqueness condition of De�ni	

tion 
���

Let Pn
X be the set of relevant restructors of the form

�u � � ��u� 	z 

i

�x � �u � � ��u� 	z 

j

�� x

where x � VX for some base type X and i � j � n � �� and let P �
S
m�Y P

m
Y � Assume f

has arity n and output type A� Since A must be a simple type� ��f
 is a restructor only if

��f
 � Pn
A� We show this leads to a contradiction�

Proof of B��� Assume ��f
 � � � Pn
A and ���f
 � ��p for some �� � Pm

A � �Note that ��

might be �A�
 Since 
����f

 � �� 
���
��f

 � �� Every element of P has an inverse� so there

is a ���� such that � � ���
��
� �� Thus 
�����f

 � 
����p
 � � � ���

��
� �� or


��p
 � ���� �

Likewise�


��p
 � ���� �

Let x be a variable in p with arity k and output type X � Since 
��p
 � 
��p
 � R� p must

be a term composed entirely of restructors� �� and free variables x such that 
��x
� 
��x
 � Pk
X �

But since each restructor in P has a distinct type� 
��x
 � 
��x
� contradicting g� � G��a� b
�

Therefore� ��f
 �� R� �

Since there must be a subterm t� � ��fr
 � ���fr
 in t� Lemma B��� gives us

Lemma B��� head���f

 � head����f



���



where

head�t
 �

��
� � if t � �

x if t � xs for a symbol x �� �

These results allow us to show Theorem 
����

Proof Suppose ��f
 � p and ���f
 � p�� Then by Lemma B���� there are terms p�� qn� and q�n

such that p � p� qn and p� � p� q�n for p� �� � �unless ��f
 � �
 and qn �� q�n� We use induction

on the size of substitutions �using a multiset ordering
 to show qn � q�n by constructing the

commutative diagram
s�fr�

	
























��

A
A
A
A
A
A
A
A
A
A
A
A

��

U

s�
�

�

��
�
�
�
�

���
�
�
�
�
�

���

R
a �


�
t

��

��

���


� � b

such that � � �� � � and �� � ��� � �� Let hn be a collection of fresh variables� and let

���f
 � p� q�n for some collection of terms q�n

���f
 � p� q�n for some collection of terms q�n

� � ff �� p� hng

�� � � n f � fh� �� q�� � � � � hn �� qng

��� � �� n f � fh� �� q��� � � � � hn �� q�ng

��� � �� n f � fh� �� q��� � � � � hn �� q�ng

��� � �� n f � fh� �� q��� � � � � hn �� q�ng

Then the diagram commutes for all but �� � ���� and we can use induction to show ���f
 �

����f
� Thus � � ��� �

B�� Correctness of Algorithm ���


We conclude Appendix B with a proof that the generalization algorithm for ground relevant

combinator terms is correct� The proof is very similar to the proof of correctness for Algo	

rithm 
���� In this section� assume the steps and relation �� are as given by Algorithm 
����

���



Whenever multiple variables are introduced� they are not adjacent� so

Lemma B��� If g� is in CG�a� b
 and g� �� g�� then g� is in CG�a� b
�

Because of the restriction on Factor�Restructor that � not have an inverse�

Lemma B��� Whenever g�� g� are in CG�a� b
 and g� �� g�� g� � g��

Finally� we show

Lemma B��� Whenever gr � MSC�a� b
� gt is in CG�a� b
� and gt � gr� there is a gs in

CG�a� b
 such that gt �� gs and gs � gr�

Proof The proof is nearly the same as in Lemma 
���� we assume the same notation here�

One di�erence is that we must apply the de�nition of renamings given in De�nition 
��� when

selecting f � FV�t
 such that �r�f
 is not a renaming� The other di�erence is in the analysis

of �r�f
� Let �r�f
 � Hp such that Hp is in restructor	reduced form with H not being a

restructor unless p � �� There are three cases for H �

i� H is a restructor �� p � �� so ���f
 � ����r�f

 � � � ����r�f

 � ���f
� and Delete

can be applied�

ii� H is a constant function symbol K� head����f

 � head�����r�f


 � K �

head�����r�f


 � head����f

� so Factor�Constant can be applied�

iii� H is a free variable h� By the assumption that �r�f
 is not a renaming� p � � pn�
�

for some �� �� � AC �the set of associative	commutative restructors
 such that for some

pi � pn� pi has no inverse� There are three cases based on pi�

�a
 head�pi
 is a free variable h�� this would mean that h and h� are adjacent in r� a

contradiction�

�b
 pi is a restructor �� by assumption� there is no inverse for �� so Factor�Restructor

is applicable since � must occur in both ���f
 and ���f
�

�c
 head�pi
 is a constant K� again� K must occur in both ���f
 and ���f
� so Factor�

Constant is applicable� �

These results can be used to show soundness �Theorem 
���
 and completeness �Theo	

rem 
���
 as before�

���



Appendix C

Categorical Foundations of

Uni�cation and Generalization

This appendix presents uni�cation and generalization �Section 
��
 in a categorical framework�

In particular� we de�ne a category of terms and give categorical de�nitions of minimally com	

plete sets of uni�ers and generalizations� We assume familiarity with the basics of category

theory �cf� �AM�
� AL��� Mac��� Pie���
�

Let T be a set of �terms� of some kind de�ned over some countable set of variables V �

A substitution is a partial function � � V � T with the domain dom � de�ned as the set of

variables bound by � and ran � � fFV���x

 j x � dom �g� We say that a substitution � maps

a term r to a term s� written � � r� s� if

� dom � � FV�r
�

� ran � � FV�s
� and

� ��r
 � s�

Observe that in most cases T forms a category with substitutions as arrows� The identity

arrows are the substitutions �id � r� r de�ned as

�id � fx �� x j x � FV�r
g

Given substitutions � � r� s and 
 � s� t� their composition is de�ned as


 � � � fx �� 
���x

 j x � FV�r
g � r� t

Note that the de�nition and associativity of composition for substitutions depends on T � If

composition of substitutions is well	de�ned and associative� we call T a term category� We use

T to denote an arbitrary term category�

���



The above treatment is somewhat unusual� First� unlike most examples of categories �par	

ticularly in computer science
� T is not based on sets� However� while this may be rare� there

are precedents� Another example of such a category is the category of propositions with proofs

as arrows �LS���� The above treatment is also unusual in that usually terms are viewed as

arrows between �types� �Law���� see �Gog��� for a discussion of uni�cation based on �Law����

However� the two treatments are closely related� where we write � � r� s� �Gog��� would write

X
� � Y

�
�
�
�
�

s

R
Z
�

r

Likewise� the generalization

r �
��

g
�� � s

would be written as

X�
�� � Y �

��
X�

�
�
�
�
�

r

R ��
�
�
�
�

s

Z
�

g

and the �weak
 uni�er

r
�� � u �

��
s

as

X�
� ��

Y
�� � X�

�
�
�
�
�

r

R ��
�
�
�
�

s

Z
�

u

Note when terms are viewed as arrows� generalization and uni�cation are not duals of each

other�

When T is the term category of �rst	order terms over an empty equational theory� T forms

a preorder� As noted by Plotkin �Plo���� generalization and uni�cation in this case are de�ned

by products and coproducts� respectively� But in the general case� they are not� For example�

���



in the term category of strings� we have

a

��
�
�
�
�

�id
�
�
�
�
�

�id

R
a �

�a� 
�
xy

�
� a� � a

If the product of a and itself exists� then it must be ga � h�id � a� a� �id � a� ai because the

only substitution de�ned for a is �id �where� in this case� �id � �
� But ga cannot be the product

since any substitution from xy to a must bind either x or y to 
� Thus a categorical de�nition of

generalization must allow for multiple maximally speci�c generalizations� See Example 
�� for a

similar case involving distinct terms� These and other examples lead us to introduce the terms

product set and coproduct set and using these to de�ne generalization and uni�cation� These

terms are motivated by the de�nition of weakly initial sets in �Mac��� Section X��� Theorem

��� They are closely related to �uniquely minimal �oorings� in �Gog��� and the dual notion

�uniquely minimal ceilings��

We �rst consider generalization� We start by naming the pairs of arrows which appear in

the de�nition of a product and the morphisms between such pairs�

De
nition C�� Given objects a and b in the categoryC� de�ne a projection pair to be a pair of

arrows f � u� a and f � � u� b for an object u in C� This is written as hf � u� a� f � � u� bi�

Given projection pairs hg � v � a� g� � v � bi and hf � u � a� f � � u � bi� de�ne a projection

morphism to be an arrow h � v � u such that the following diagram commutes�

v

��
�
�
�
�

g
�
�
�
�
�

g�

R
a �

f
u
�

h

f � � b

Thus the set of generalizations G�a� b
 for some a� b � T forms a category with projection pairs

in T as objects and projection morphisms� also known as generalization morphisms� as arrows�

De
nition C�� Given objects a and b in C� a product set is a minimal set of projection pairs

P � fhfi � si � a� f �i � si � big in C such that for each projection pair q in C� there is a p � P

and a unique projection morphism h � q � p�

This de�nition is very similar to the de�nition of maximally speci�c generalization in 
��� The

only di�erence is the usage of �minimal�� In C��� �minimal� is used to constrain the product

set to contain as few projection pairs as possible� In 
��� �minimal� constrains MSG so that if

���



h � g � g� for g� g� � MSG�a� b
� h � �id � The following lemma� adapted from �Gog���� shows

that these two usages are equivalent�

Lemma C�� Let P be a set of projection pairs over a and b in C such that for each projection

pair p for a and b in C� there is a p� � P such that p� p�� Then P is minimal �in the sense of

containing as few elements as possible
 if and only if for each q� q� � P � q � q� implies q � q��

Proof Suppose q� q� � P and q � q�� Then by the assumption that P is minimal� q � q��

Conversely� suppose P is not minimal� then there are q� q� � P such that q � q� for q �� q�� a

contradiction� �

Thus MSG is an instance of product sets� Furthermore� Lemma C�� means that product sets

are unique up to an isomorphism�

Theorem C�� If P� and P� are product sets in C� P�
�� P��

The proof is constructed by making minor modi�cations to the proof of Theorem 
���

Proof By assumption� for each p� � P� there is a p� � P� and a unique morphism h � p� � p��

Likewise� there is a q� � P� and a unique morphism h� � p� � q�� But because morphisms

compose and P� satis�es the minimality condition� p� � q�� Furthermore� h� �h � �id � p� � p�

and h � h� � �id � giving P�
�� P�� �

Thus product sets are unique and can be used to de�ne generalization�

We use the dual notions to de�ne uni�cation�

De
nition C�� Given objects a and b in the categoryC� de�ne an injection pair to be a pair of

arrows f � a� u and f � � b� u for an object u in C� This is written as hf � a� u� f � � b� ui�

Given injection pairs hg � a � v� g� � b � vi and hf � a � u� f � � b � ui� de�ne an injection

morphism to be an h � v � u such that the following diagram commutes�

a
g � v �

g�
b

�
�
�
�
�

f

R ��
�
�
�
�

f �

u
�

h

Thus the set of uni�ers of a and b forms a category with injection pairs as objects and injection

morphisms as arrows�

De
nition C�	 Given objects a and b in C� a coproduct set is a minimal set of injection pairs

I � fhfi � a � si� f
�
i � b � siig in C such that for each injection pair q In C� there is a p � I

and a unique injection morphism h � p� q�

��




That is� if product sets parallel limits� coproduct sets parallel colimits� Again� this de�nition

is similar to the de�nition of uniquely minimal complete sets of uni�ers �
�
 with uniqueness


except for the usage of �minimal�� The dual of Lemma C�� proves that the two usages are

equivalent�

Lemma C�� Let I be a set of injection pairs over a and b in C such that for each injection

pair p for a and b in C� there is a p� � I such that p� � p� Then I is minimal �in the sense of

containing as few elements as possible
 if and only if for each q� q� � I � q� � q implies q � q��

Thus uniquely minimal complete sets of uni�ers are instances of coproduct sets� As with product

sets� Lemma C�� implies that coproduct sets are unique up to an isomorphism�

Theorem C�
 If I� and I� are coproduct sets in C� I� �� I��

Proof Dual of Theorem C��� �

Thus coproduct sets are unique and can be used to de�ne uni�cation� Investigating uni�cation

in this framework is left as future work�

The categorical treatment of generalization and uni�cation contributes by motivating the

condition that morphisms to product sets �or from coproduct sets
 be unique� As discussed in

Section 
��� minimally complete sets of generalizations and uni�ers are not necessarily canonical�

For applications in which canonical sets of generalizations and uni�ers are useful� the uniqueness

condition gives sets which are canonical up to an isomorphism� While there are other ways to

de�ne canonical sets� the uniqueness condition has the advantage of being consistent with the

standard practice in category theory of using unique morphisms to de�ne special objects�

Thus we have de�ned generalization and uni�cation using concepts from category theory

and have shown that the de�nitions are equivalent to those in Section 
��� This helps clarify

the relationship between generalization and uni�cation� It also helps motivate our de�nitions

for generalization morphisms and maximally speci�c generalizations�

���
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