
Special Topics No. 1: JavaDoc
Documentation Tool

ST-1
In this document, we provide basic information on the standard Java API
documentation tool called javadoc. Using the javadoc tool on the source
code embedded with javadoc-style comments, we can generate the HTML-
based documentation of the Java source code automatically. Online docu-
mentation for the standard Java API libraries is produced with this tool; so is
the documentation for the javabook and galapagos packages.
1 - 1

1 - 2 Special Topics No. 1: JavaDoc Documentation Tool

Ja
va

do
c

To
ol
Introduction
In this document, we will describe the use of a documentation tool called java-
doc and how to comment the source code so the javadoc tool can produce the
HTML-based documentation. The documentation for the standard Java API can
be viewed by opening the HTML file named index.html in the docs/api subdi-
rectory (e.g., jdk1.3/docs/api). The documentation for the javabook and galapa-
gos packages is produced by using the javadoc tool, also. To use the javadoc
tool, the source file must be commented in the javadoc-style comments with the
appropriate tags. We will discuss the javadoc-style comments in this document.
We will call the javadoc-style comments simply javadoc comments or doc com-
ments.

1 Javadoc Comments

A javadoc comment begins with the /** marker and ends with the */ marker.
The following is a javadoc comment:

/**
 * This is a javadoc comment.
 */

Because javadoc generates HTML file, any valid HTML can be embedded.
In this example, the word ‘javadoc’ appears in bold. A javadoc comment may
be composed of mutliple lines, for example:

/**
 * This is line one.
 * This is line two.
 *
 * This is intended as a new paragraph.
 */

Although the lines are separated in the source file, when the javadoc tool
parses a javadoc comment, leading * characters on each line are discarded and
blanks and tabs preceding the initial * characters are also discarded, except for
the first line. The * characters are a marker we use to make the javadoc com-
ments more readable in the source file; they will not appear in the generated
HTML documents. Since the blanks and tabs are also removed, we need to use
an HTML tag <p> to mark a new paragraph as in

Javadoc Tags 1 - 3

Javadoc Tool
/**
 * This is paragraph one.
 *
 * <p>
 * This is paragraph two.
 *
 * <p>
 * This is the last paragraph.
 */

Another useful HTML marker is <code>, which we can use to include a
sample code in a javadoc comment. Any text between the <code> and </code>
markers will appear in a Courier font. List markers such as are also useful.

The first sentence of a javadoc comment should be written as a summary of
the comment. The first sentence ends at the first period that is followed by a
blank, tab, line delimiter, or a javadoc tag (we will explain the javadoc tag in the
next section). When the javadoc tool generates the HTML file, the first sentence
will appear in the member summary section at the top of the HTML file.

For the javadoc comments to be recognized as such by the javadoc tool,
they must appear immediately before the class, interface, constructor, method,
or data member declarations. This is why the import statements appear at the
very beginning of the source files when javadoc comments are used. If you put
the javadoc comment for the class before the import statements, it will be ig-
nored.

2 Javadoc Tags

There are a number of special tags we can embed with the javadoc comments.
These tags start with the “at” symbol @. We will mention only the more com-
mon ones. For a complete list, please refer to the resources given in the last sec-
tion of this document.

Javadoc tags must start at the beginning of a line. If you have more than one
line with the same tag (e.g., multiple @param tags), then place the tags together.
This will ensure that the javadoc tool can tell where the list ends.

@author
Use this tag to create an author entry. You can have multiple @author tags.

This tag is meaningful only for the class/interface javadoc comment.

1 - 4 Special Topics No. 1: JavaDoc Documentation Tool

Ja
va

do
c

To
ol
@version
Use this tag to create a version entry. A javadoc comment may contain at

most one @version tag. Version normally refers to the version of the software
(such as the JDK) that contains this feature.

@see
Use this tag to add a hyperlinked "See Also" entry to the class. Here are

three examples:

 @see java.lang.String
 @see String
 @see javabook.JavaBookDialog

@param
Use this tag to add a parameter description for a method. This tag contains

two parts: the first is the name of the parameter and the second is the descrip-
tion. The decription can be more than one line. Here’s an example:

@param size the length of the passed array

@return
Use this tag to add a return type description for a method. This tag is mean-

ingful only if the method’s return is non-void. Here’s an example:

@return true if the array is empty; otherwise return
false

An example
Here’s a bigger example:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;

/**
 * This applet accepts the user’s name via a <code>TextField</code> object.
 * When the user presses the ENTER key, the applet displays
 * a personalized greeting "Nice to meet you, <user name>."

Javadoc Tags 1 - 5

Javadoc Tool
 * with <user name> replaced by the actual name entered by the user.
 *
 * @author Dr. Caffeine
 * @version 1.0
 *
 */
public class GreetingApplet extends Applet implements ActionListener
{

/**
 * To prompt user for input
 */
private Label prompt;

/**
 * To display the personalized greeting
 */
private Label greeting;

/**
 * To accept user input

 */
private TextField inputLine;

/**
 * Default constructor that creates one TextField and
 * two Label objects. This GreetingApplet is set to be
 * an ActionListener of itself.
 */
public GreetingApplet()
{

//create GUI objects
prompt = new Label("Please enter your name:");
greeting = new Label();
inputLine = new TextField();

//add GUI objects to the applet
add(prompt);
add(greeting);
add(inputLine);

//add this applet as an action listener
inputLine.addActionListener(this);

}

/**
 * Implements the abstract method defined in the interface

 * ActionListener. The method retrieves the text from the
 * TextField object ‘inputLine’ and displays the personalized

1 - 6 Special Topics No. 1: JavaDoc Documentation Tool

Ja
va

do
c

To
ol
 * greeting using the Label object ‘greeting’.
 *
 * @param event the ActionEvent object to process
 */
public void actionPerformed(ActionEvent event)
{

greeting.setText("Nice to meet you,"
+ inputLine.getText() + ".");

add(greeting);
doLayout();

}
}

3 Generating the Javadoc Documentation

After we add javadoc comments to the source files, we use the javadoc com-
mand to generate the documentation. We run the javadoc as we run javac or java
tools. After the command, we enter either the package name or the soure file
names. For example to javadoc the complete javabook package, we write

javadoc javabook

By default, javadoc produces a set of HTML files, one .html file for every
source file, that describe the public and protected classes, interfaces, construc-
tors, methods, and data members. To change the default, we must specify the
options. For example,

javadoc -private javabook

will produce the description of all classes and their method and data members.
For other options, please refer to the homepage shown in the next section.

4 For More Information

The best source of information on the javadoc tool is the javadoc home
page at

http://java.sun.com/products/jdk/javadoc/

	Introduction
	1 Javadoc Comments
	2 Javadoc Tags
	@author
	@version
	@see
	@param
	@return
	An example

	3 Generating the Javadoc Documentation
	4 For More Information

