
Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 1 of 6

Lab 2: Basic Assembly Programming and Debugging using AVR Studio

Due: December 13, 2011

1 Outcomes
 Familiarize yourself with the capabilities of the ATMEGA32 embedded microcontroller and

AVR Studio.
 Develop a simple software program in assembly for the Atmega32 embedded microcontroller.
 Learn the steps involved in creating, assembling, loading, running/simulating, and debugging

programs for the Atmel system.
 Practice using an Oscilloscope to make simple measurements.

2 Equipment Needed from Tech Support
1 scope probe

3 Pre-lab
1. Watch the video online on setting up and measuring with the scope.
2. Watch the video online showing an operating version of this program.
3. Watch the video online showing how to interpret the listing file.

4 Overview
The purpose of this lab is for you become more familiar with the embedded software development tools
that you will be using throughout the quarter – specifically the AVR Studio IDE.

In this lab, you'll reinforce your knowledge of the steps involved in creating, assembling, loading,
running/simulating, and debugging programs for the Atmel system.

Each student must work independently on this project.

5 Lab activity
Create a project (e.g. lab2) in AVR Studio. (Hint: If you need to refresh your memory on how to create a
project, go back to last week’s lab.) Make sure you select the appropriate type of project when you run
the Project Wizard. Also, like last week, make certain the “Create List File” option is enabled.

You'll have an empty lab2.asm file to begin with. You may use the program demonstrated in lecture as a
starting point. Observe the following assembly language coding conventions when writing your
program in order to avoid a mangled mess of code:

 Directives and labels begin in the left-most column.
 Instructions begin in a second column; use the dialog under Tools/Options/Editor to set the tab

width to 10 (the default is 4).
 Operands begin in a third column

Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 2 of 6

 Instruction comments begin in a fourth column; assembly language programs must be heavily
commented.

Using the template given in Appendix A, create a source code file (lab2.asm) for your program. The
program should contain the following content:

1. Definitions and declarations
1. Place comments at the top of your lab2.asm file similar to those found in the example

code template in Appendix A of this document.
2. .include the file m32def.inc file for symbolic definitions that you will be using

subsequently in your program; surround this directive with .nolist and .list to
suppress it from appearing in the lab2.lst file

3. Equate (.equ) the symbol PROGRAM_START to the value 0x2a. This symbol represents
where your program actually starts in Flash memory, and is located right after the vector
table. (Hint: You’ll use the .org directive along with this symbol later on.)

4. Define (.def) a symbolic name for register 16 as TEMP.
5. Define a symbolic name for register 17 as ONE.

2. Variable declarations (in the data segment)

1. Define a variable named counter which has a size of 1 byte.
2. Define variables delayc1 and delayc2 which are each 1 byte.

3. Code segment
1. Use .cseg and .org directives along with the RJMP instruction to initialize the Reset

Vector to cause the program to jump to PROGRAM_START upon power-on.
2. Use .org and the PROGRAM_START symbol to cause the assembler to place the remainder

of your code beginning at the PROGRAM_START location in Flash memory.
3. Set the DDRB I/O register to configure PORTB as a digital output port. Note that DDRB

and PORTB are I/O memory locations predefined in the m32def.inc file.
4. Initialize the value of counter to 0.
5. Initialize the value of ONE to 1.
6. Initialize the variables delayc1 and delayc2 to 0xFF.
7. Add the code of Figure 1 to initialize the stack.
8. Write a segment of assembly language code which will take the value of counter and

add a value of ONE in a loop. The value will then be stored back into the counter
variable as well as output to PORTB in order to illuminate the LEDs.

6 Simulation and Debugging in AVR Studio
Build the project in AVR Studio. Once built successfully, set a breakpoint on the first instruction in your
program. Next, select the “Start Debugging” command from the Debug menu; the program will start to
execute, but will stop on the breakpoint you just set. Before continuing, set the clock frequency of the
simulator by selecting “AVR Simulator Options” from the Debug menu. In the dialog that appears
(below), select 8MHz as the clock frequency since the simulator does not permit you to select 16MHz.

Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 3 of 6

Test-run your program in AVR Studio debugger in order to verify that it runs as expected. Demonstrate
the program to your instructor, or ask for help if you're having difficulty. Port Values will show on the
left, and like Eclipse, you can single step through the source code using the debug option. Be cognizant
of the Port B values on the screen when the program executes.

Figure 2: AVR Studio Simulator execution (Note: Source code has been “omitted” from the screen capture.)

Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 4 of 6

Once your program is running correctly, examine the generated list file (lab2.lst) to answer the following
questions for your report. (Hint: If you do not have a lab2.lst, click on the assembler options menu item
from the project menu and check the box “Create List File”. This will create a listing file for you each
time the code builds which can be examined.)

Q1) How many bytes of SRAM is your program using? Does this make sense based on the variables you
declared? (Hint: There is a table at the very end of the file which shows this information.)
Q2) How many bytes is the code of your program occupying? (Hint: There is a table at the very end of
the file which shows this information.)
Q3) How many different instructions are you using? Which is the most common instruction?
Q4) What address has been assigned to the counter variable?

Use the built-in debugger to single-step your program. Expand the Processor icon to display the Stop
Watch. Determine the answer to the following questions for your report:

Q5) How many CPU cycles does your loop take to execute?
Q6) How many microseconds does your loop take to execute?

Examine SREG. The SREG display can be expanded to show each of its individual bits. Single-step and
or run your program in another manner to answer the following questions:

Q7) What is the value of counter when the “H” bit of SREG is first set?
Q8) What is the value of counter when the “Z” bit is first set?
Q9) What is the value of counter when the “C” bit is first set?

7 Execution on the board
Now that you have debugged through your program, remove all breakpoints by using the “remove all
breakpoints” menu option. Change the debug platform to be “JTAG ICE” and the Device to be an
ATMEGA32. Build the code and select “start debugging” from the debug menu. (Hint: You may want
to watch the video about downloading code your board again.) Reset the part by selecting “Debug” and
“Reset”. Then click on run to start executing the program. Observe the LEDs.

Q10) Why do the LEDs all appear to be lit continuously?

Q11) Change the value of ONE to be 2 instead of 1. How does this change the behavior? Why?

Place a breakpoint in the code at the line “sts PORTB, TEMP”. Reset the part and run the code again.
Are the LEDs changing? Now connect an oscilloscope to LED 7 on your board. Remove the breakpoint
and run your program again.

Q12) What is the frequency of the waveform you are generating?

Now we’ll add what is referred to as a delay loop to your code. Somewhere between your jump
instruction and the label to which you are jumping, add the code shown in Figure 3.

Q13) What happens now? What is the frequency seen on LED7? What happens to the visibility of the
led’s?

Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 5 of 6

8 Lab Report
Now that you have completed your lab assignment, submit the following lab report detailing your
experiences. The lab report should be submitted electronically through Blackboard as a pdf file.

1. Introduction -> What did you accomplish with this lab?
2. Questions -> Answer each of the Questions Q1 – Q13.
3. Things gone Right -> What things went right in performing this lab?
4. Things gone Wrong -> What problems did you have? What mistakes did you make?
5. Conclusions -> This section shall discuss what has been learned from this laboratory

experience.
6. Listing file -> Include the file lab1.lst, the listing file, generated by the assembler. Simply

copy and paste the file to the end of your report as an appendix.
7. Source code. -> Copy and paste your source code into the back of your document before

printing it to a pdf file.

If you have any questions, consult your instructor.

outer_loop:
 ldi TEMP, 0xFF
 sts delayc2, TEMP
inner_loop:
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop

 lds TEMP, delayc2
 dec TEMP
 sts delayc2, TEMP
 brbc 1, inner_loop

 lds TEMP, delayc1
 dec temp
 sts delayc1, TEMP

 brbc 1, outer_loop
 rjmp repeat ; Jump to the repeat instruction

Figure 3: Delay loop code.

Department of Electrical and Computer Engineering and Computer Science
Milwaukee School of Engineering
Winter Quarter, 2011-2012
CE2800: Embedded Systems Software 1

Page 6 of 6

Appendix A: Assembly language source code
template.
;##
; Course: CE2800 Winter 2010-2011
; Assignment: Lab 2
; Author: schilling@msoe.edu
; Date: 12-1-2010
;
;##
; <Add a generous definition of the program here.>
;
; CONFIGURATION
; - <Define the configuration for the program here…>
;
;##
; Define and equal directives go here.
;
;##
.list

; Define the input and output addresses to access the hardware registers.
.equ . . .

; Define any register assignments here.
.def . . .

;##
; DATA SEGMENT DEFINITION
; Define your variables here. For each variable, comment on what it represents and is used for.
;##
.dseg ; Begin the data segment
.
.
.

;##
; CODE SEGMENT DEFINITION
;##
.cseg ; Begin code segment
.
.
.

;##
; Main program goes here.
; Major logic should be commented to explain what is happening within your code.
;##
.org PROGRAM_START
init:
.
.
.

mailto:schilling@msoe.edu

