

Name: __________________

Milwaukee School of Engineering

Electrical Engineering and Computer Science Department

CS-280 —Final Exam
Thursday 24 May 2007

Name: ______________________________
Allowed materials:

· Atmel Reference Guide

· 2-sided note sheet

· Calculator
No sharing of materials.

General Instructions:

· Put your name on each page
· Write neatly and clearly.
· Show work for a problem only on its sheet(s). Extra sheets may be used, but each sheet must clearly indicate which problem it addresses.
· Ask for clarification if a problem statement is not clear.
Show all work neatly and clearly so that partial credit can be given.

Problem 1:
(30 points) ______

Problem 2:
(25 points) ______

Problem 3:
(20 points) ______

Problem 4:
(25 points) ______

Total:
(100 points) ______

1. Stack utilization (30 Points)
Consider the following Assembly language program fragment for the problem statement on the following page.

; code above this point performed the usual initialization of the Stack etc.

 .ORG 0x200

; code below here starts at 0x200

000200 2700
clr
r16

; Start
000201 930f
push
r16

; A

000202 e140
ldi
r20, 0x10

000203 934f
push
r20

; B

000204 954a
dec
r20

000205 bb48
out
PORTB, r20

000206 934f
push
r20

; C

000207 d0f8
rcall delay

000208 0000
nop

; G

000209 914f
pop
r20

; H

 end:

00020b cfff
rjmp
end

 ; end of "main"

 .ORG 0x300 ; code below here starts at 0x300

 ; subroutine delay - waste time

 Delay:

000300 0000
nop

; D

000301 930f
push
r16

; E

000302 ef0f
ldi
r16, 0x60
 continue:

000303 950a
dec
r16

000304 f7f1
brne
continue

000305 910f
pop
r16

; F

000306 9508
ret

 ; end subroutine delay

Suppose the program starts executing, and reaches the instruction indicated as “Start” in the comment. At this point assume the Stack is empty and the Stack Pointer points to 0x083F (that is, the value of the Stack Pointer, SP, is 0x083F).

The program executes the remaining instructions normally. Complete the diagrams below, corresponding to the status of the Stack after each of the instructions A through H (as identified in the comments) executes. Consider the bottom cell to be at location 0x083F. For each diagram,
· write the current value of data memory in the cells below (unused data memory has initial value 0xFF – you may leave a cell blank if you want to indicate 0xFF).
· indicate where the Stack Pointer (SP) is pointing in each case with an arrow.
[image: image10.emf]

0xFF

[image: image11.emf]

0xFF

[image: image12.emf]

0xFF

[image: image13.emf]

0xFF

[image: image14.emf]

0xFF

[image: image15.emf]

0xFF

[image: image16.emf]

0xFF

[image: image17.emf]

0xFF

[image: image18.emf]

0xFF

[image: image19.emf]

0xFF

[image: image20.emf]

0xFF

[image: image21.emf]

0xFF

[image: image22.emf]

0xFF

[image: image23.emf]

0xFF

[image: image24.emf]

0xFF

[image: image25.emf]

0xFF

What value is contained in r16 after instruction H executes?

What value is contained in r20 after instruction H executes?

2. External Interrupts and Timer/Counter (25 Points)

The turn signals of some automobiles have a “lane change indicator” convenience feature that is activated just by slightly deflecting the signal lever switch and letting it return to it’s “neutral” position. This causes the turn signal to blink three times – sufficient to indicate a lane change maneuver.
Such a feature can be implemented on the STK200, substituting switches SW2 and SW3 for the signal lever left and right switches. On the following page, write a complete AVR Assembly language program that

· Uses external interrupts INT0 and INT1 to trigger in response to RELEASING SW2 (“signal left”) and SW1 (“signal right”) switches .
· When the external interrupts are triggered, they invoke ISRs called handleLeftSignal and handleRightSignal. The ISRs set a Data Memory variable called signal to indicate left (signal=0) or right (signal=1), and then call a initTimer subroutine that initializes Timer/Counter 0 such that the Timer/Counter triggers an interrupt every 0.5 seconds. The INT0 ISR also lights LED 0 (left signal light) and INT1 ISR lights LED1 (right signal light).
· Every time the Timer/Counter interrupt triggers, it invokes a blinkLight ISR that toggles the state of the correct LED (from on to off, or from off to on), and keeps track of the number of blinks in a Data Memory variable called blinkCount.
· After 6 Timer/Counter interrupts (on/off/on/off/on/off), the Timer/Counter is stopped (and the LED stops blinking until the next INT0 or INT1 occurs), and blinkCount is reset to 0.
The steps below are provided to help you solve the problem. Clearly document and develop AVR Assembly code for each of the following steps:

a. (5 pts) Stack and Interrupt vector initialization, data memory allocation. See the data sheets for Intterupt vector locations.
b. (5 pts) Interrupt INT0 and INT1 enabling and initialization.
c. (5 pts) handleLeftSignal/handleRightSignal ISRs that handle the external interrupts.
d. (5 pts) initTimer subroutine that enables and initializes the Timer/Counter 0.
e. (5 pts) Timer/Counter 0 blinkLight ISR that handles blinking the LEDs for the correct number of times.
[Space for work on problem 2]
3. C/Assembly Argument Passing (25 Points)

Suppose you are given a subroutine that conforms (in terms of argument passing conventions) to the following C function: int calcResult(uint8_t a, long b, int c);

Write an AVR Assembly language subroutine called doCalculate, including comments, that calls calcResult, passing the values located in Data Memory labeled A, B, and C. After the call, store the resulting return value in Data Memory labeled D.

The phases listed below are provided to help you structure the program.

a. (5 pts) Data Memory allocation for A, B, C, and D of appropriate length.

b. (10 pts) Loading values A, B, and C from Data Memory to appropriate registers to comply with the C-language calling convention for argument passing.

c. (5 pts) Retrieval of the return value from appropriate registers and storage to Data Memory D.

d. (5 pts) Correct saving/restoration of registers used in the calling subroutine.

4. Assembly Language Program (20 Points)
These numbers: 1, 1, 2, 3, 5, 8, 13, 21 ... are called the Fibonacci series, and are often found in nature. Each number is the sum of the previous two numbers.
Develop a complete AVR Atmega32 assembler application to calculate the first 100 values in the Fibonacci series and store the results in consecutive word (2-byte) locations in data memory beginning at the Data Memory address labeled FSERIES. Note: 2-bytes are required for each value because they soon exceed 255. Thus, you need to implement 2-byte addition. You may want to consider using subroutines in your solution.
Atmel Reference Material appears on the following pages.

[image: image1.png]+ Bit7-FOCO: Force Output Compare

The FOCD bitis only active when the WGMOD bit specifes a non-PWM mode. However,
for ensuring compatibiity with future devices, this bitmust be set o zero when TCCRO S,
written when operating in PWM moce. When writing a logical one fo the FOCD b, an
immeciate compare match i forced on the Wavefom Generation urit. The OCD output
is changed according {0 ts COMDI:D bits sefting. Note that the FOCD bit s implementec
a5 a strobe. Therefore it s the value present in the COMO1:0 bits that determines the.
effectof the forced compare.

A FOC strobe wil not generate any interrupt, nor wil clear the timer in CTC mode.
using OCRO as TOP.

The FOCO bt s aiways read as zero.

+ Bit6, 3 - WGMo1

Waveform Generation Mode
‘These bits control the counting sequence of the counter, the source for the maximur
(TOP) counter value, and what type of Waveform Generation to be used. Modes of
operation supported by the Timer/Counter unitare: Normal mode, Clea Timer on Com-
pare Match (CTC) mode, and two types of Puise Wicth Modulation (PWH) modes. See
Table 38 and “Modes of Operaton” on page 71

Table 38, Waveform Generation Mode Sit Descrption’

WGMOT | WGMOD | TimeriCounter Mode Update of | TOVO Fiag
Mode | (CTCD) | (PWMD) | of Operation Top | ocRo | seton
o 0 0 [t e | immecate | wax
v 0 | o, Prsse comeat_| 0xer | ToR sorTom
T 0 Jorc 0CR0 | immeciate | wax
3 T T e | Tor Wax
Note: 1. The CTCD an2 PO bt defiton names ars now oosolte. se he WGMOT:0 dat-

indions. However, the funcionaity and locaton of t
previous versions of e tmer.

e bis are sompstie wiy

+ Bit 5:4 - COMO1:0; Compare Match Output Mode.

These bits control the Output Compare pin (OC0) behavior. If one or both of the
COMD1.D bits are set, the OCO output overtides the normal port functionaity of the 10
pin s connected to. However, note that the Data Direction Register (DDR) bit corre-
Sponding 1 the OCO pin must be set n orcr to enable the outout divr.

[image: image2.png]Wihen OCO is connected to the pin, the function of the COMD1:0 bits depends on the
WGMOT.0 it setting. Table 39 shows the COMD1-0 bit functonaty when the WGNMO10
bis are set o a normal or CTC mode (non-PWM).

Table 39. Compare Output Mode, non WM Mode

Tomn1 | Comoo_| Dezeription
o 0| Normal port operaton, 0G0 iscomnectes
o T | Tosgle 000 on compare mateh

0

Clear OG0 on compare maten

5510C0 on compare maten

[image: image3.png]- Bit 2:0- CS02:0: Clock Select
imeriCaunte

2 to be used by the

The three Clock Select bits seiect the clock sour
Table 42, Clock Select Bit Description

TS0z | Cso1 | G500 [Dezorption

0| o cock souroe (TmerCounter stoposa).

| cllugltio prescaing)

0| o3 (From presoaen)

[image: image4.png]Table 42. Clock Select Bt Descripton (Contued)

TS0z | Cs01 | G500 | Dezorption

prescaler)

0 (From prescaer)
[o102 (rom prescaler)
0| Externalcock source on T in

| Evtemal ook souoe an Topin

If extemal pin modes are used for the Timer/Counter0, transitions on the T pin wil
ciock the counter even f the pin s configured as an output. This feature allows software:
conrol of the counting.

[image: image5.png]+ Bit 1~ OCIEO: TimerCountero Output Compare Match Interrupt Enable.
When the OCIED it s writen to one, and the I-tit in the Status Register s set (one), the
Timer/Counterd Compare Match inierrupt is enabled. The corresponding intermupt is
xecuted ifa compare mateh in Timer(Counterd oceurs, i, when the OCFO bit s set in
the Timer/Counter Interrupt Flag Register — TFR.

+ Bit 0 - TOIED: Timer

/Counterd Overflow Interrupt Enable
When the TOIED bit s wrtten o one, and the Lbitin the Status Register is set (one), the
TimeriCounterd Overfiow inferupt i enabled. The corresponding interrupt s executed
an overflow in Timer/Counterd occurs, L., when the TOVO bit is set in the
TimeriCounter Interrust Flag Register — TIFR

[image: image6.png]+ Bit7—INTH: External Interrupt Request 1 Enable

When the INTH bit s set (one) and the L-bit in the Status Register (SREG) s set (one),
the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and

[image: image7.png]ISC10) in the MCU General Control Register (MCUCR) define whether the Exteral
Intermupt is actvated on ising andlor faling edge of the INT i or level sensed. Activity
on the pin wil cause an interruot request even ff INT is configured as an outout. The.
comesponding interrupt of Exteral Interrupt Reguest 1 is executed fom the INTH inter-
rupt Vector

+ Bit 6 - INTO: External Interrupt Request 0 Enable

When the INTO bit i set (one) and the 1-bit in the Status Register (SREG) s set (one),
the extemal pin interrupt is enabied. The Interrupt Sense Control0 bis 110 1SC01 and
ISCOD) in the MCU General Control Register (MCUCR) define whether the External
Intermuptis actvated on ising andlor faling edge of the INTO pin or level sensed. Activity
on the pin wil cause an interruot request even f INTO is configured as an outout. The.
conesponding inferrupt of External Interrupt Request 0 is executed fom the INTO inter-
rupt vector

[image: image8.png]“The MCU Control Register contains conrol bits for nterrupt sense control and general
MCU functions.

+ Bit3,2-ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0

The Extemal Interupt 1is activated by the exteral pin INT f the SREG Lbit and the.
corresponding inferrupt mask i the GICR are set. The level and edges on the exiemal
INTI pin that actvate the interrupt are defined n Table 34. The value on the INT1 pin s
sampled before detecting edges. If edge of toggle nterupt s selected, puises that last
longer than one clock period will generate an nterupt. Shorter pulses are not guaran-
teed 0 generate an nterrupt Iflow levelinterrupt is sefected, the low level must be heid
unti the compietion of the curtenty executing insiructon to generate an inerrupt

Table 34. Intermupt 1 Sense Control

1SC11_| 15C10 | Deserption
o o
o v
v o

evelof T

res an nerrup reguest
w1

5 o interupt reques:

T generstes amintemupt recust

v 1| The ising edge of INT1 generaes an nterupt request

[image: image9.png]Table 18, Reset and Interrupt Vectors

Program.
Vestor No. | Address® | Sourse | interrupt Defniton
000 RESET | Bl in, Power-on Resa: Srowrout
Reset, Watohdog Resel, and JTAG AVR
Rest
2) Exermalintarupt Resuest0
3 Wt cermalintarupt Resuest
)) Ecermal intarupt Reuest 2
s TIMER? COVP_| Timer Counter2 Compre Vateh
- TMER2 OVE | TimertCounter2 Overtow
7 TIMER1 CAPT | TimanCounter) Capturs Event
[TIVER? COVPA | TimarGaunter] Compare Match &
o TIVER1 COVPB | TimerGauntert Compare Vatch &

TMER1 OVF | TimentCauntart Overtow

TIMERD COMP | Timer Counterd Compre Vateh

2 TMERO OVF_| TimertCounterd Overtow
B SPI.5TC__| Ser Trarsier Comaiets
0 USART.RXC_| USART. s Compiete
s USART, UDRE | USART Data Regster Empty
o USART. G| USART,Tx Complete

a0 3DC Comverson Campiete
D EERDY | ePRoM Resay
© ANA_COMP | Analog Cormparator

w Turorwire Serl Intersce

SPMLRDY | Store Progeam mory Ready

Extra page for work.

Extra page for work.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

B.

C.

D.

H.

G.

F.

E.

A.

2
3

[image: image26.emf]

0xFF

[image: image27.emf]

0xFF

[image: image28.emf]

0xFF

[image: image29.emf]

0xFF

[image: image30.emf]

0xFF

[image: image31.emf]

0xFF

[image: image32.emf]

0xFF

[image: image33.emf]

0xFF

[image: image34.emf]

0xFF

[image: image35.emf]

0xFF

[image: image36.emf]

0xFF

[image: image37.emf]

0xFF

[image: image38.emf]

0xFF

[image: image39.emf]

0xFF

[image: image40.emf]

0xFF

[image: image41.emf]

0xFF

[image: image42.emf]

0xFF

[image: image43.emf]

0xFF

[image: image44.emf]

0xFF

[image: image45.emf]

0xFF

[image: image46.emf]

0xFF

[image: image47.emf]

0xFF

[image: image48.emf]

0xFF

[image: image49.emf]

0xFF

[image: image50.emf]

0xFF

[image: image51.emf]

0xFF

[image: image52.emf]

0xFF

[image: image53.emf]

0xFF

[image: image54.emf]

0xFF

[image: image55.emf]

0xFF

[image: image56.emf]

0xFF

[image: image57.emf]

0xFF

[image: image58.emf]

0xFF

[image: image59.emf]

0xFF

[image: image60.emf]

0xFF

[image: image61.emf]

0xFF

[image: image62.emf]

0xFF

[image: image63.emf]

0xFF

[image: image64.emf]

0xFF

[image: image65.emf]

0xFF

[image: image66.emf]

0xFF

[image: image67.emf]

0xFF

[image: image68.emf]

0xFF

[image: image69.emf]

0xFF

[image: image70.emf]

0xFF

[image: image71.emf]

0xFF

[image: image72.emf]

0xFF

[image: image73.emf]

0xFF

