Installing the Git client

The following sections list the steps required to properly install and configure the Git clients - Git Bash and Git GUI - on a Windows 7 computer.
Git is also available for Linux and Mac. The remaining instructions here, however, are specific to the Windows installation.

Be sure to exactly follow all of the steps in all four sections.

1. Git installation

Download the Git installation program (Windows, Mac, or Linux) from http://git-scm.com/downloads.

When running the installer, various screens appear (Windows screens shown). Generally, you can accept the default selections, except in the
three screens below where you do NOT want the default selections:

In the Select Components screen, select Windows Explorer Integration with Simple Context Menu selected as shown:

Select Components
Which components should be installed?

Select the components you want to install; dear the components you do not want to
install. Click Mext when you are ready to continue,

Additional icons 3
- |[¥] In the Quick Launch [l
- || On the Desktop

Windows Explorer integration

- (@ Simple context menu (Registry based)

: Git Bash Here

L[] Git GUI Here

- (7) Advanced context menu (git-cheetah plugin) 1.1MB
Assodate .git* configuration files with the default text editor I
N Assocdate .sh files to be run with Bash

Current selection reguires at least 99,5 MB of disk space.
hitkps S fmsysgit, github, iof

< Back “ Mext =][Cancel]

—S e =

In the Adjusting your PATH screen, select the middle option (Use Git from the Windows Command Prompt) as shown:

http://git-scm.com/downloads

Adjusting your PATH environment
How would you like to use Git from the command line?

(7 Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will anly be
able to use the Git command line tools from Git Bash.

@ Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

(") Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find" and "sort”. Only
use this option if you understand the implications.

hitkps S imsysgit, github, iof

< Back “ Mext =][Cancel]

N — — >

In the Configuring the line ending screen, select the middle option (Checkout as-is, commit Unix-style line endings) as shown. This means
that will eventually have unix-style (LF) terminators. By contrast, the Windows convention is CR-LF for line termination. Most Windows editors,
however, have no problem with reading files containing only LF terminated lines; the notable exception is Notepad - so just don't use Notepad!

Configuring the line ending conversions
How should Git treat line endings in text files?

(7 Checkout Windows-style, commit Unix-style line endings

Git will convert LF to CRLF when checking out text files. When committing
text files, CRLF will be converted to LF, For cross-platform projects,
this is the recommended setting on Windows ("core.autocrlf™ is set to “true®).

@ Checkout as-is, commit Unix-style line endings

Git will nat perform any conversion when checking out text files, When
committing text files, CRLF wil be converted to LF. For cross-platform projects,
this is the recommended setting on Unix ("core. autocrl™ is set to “input™).

(71 Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects ("core.autocrlf™ is set to "false™).

hikkp: f fmnsyesait, github, iof

< Back][Mext =][Cancel

———aa—————— i

2. Configuring Git to ignore certain files

By default, Git tracks all files in a project. Typically, this is NOT what you want; rather, you want Git to ignore certain files (such as .bak files
created by an editor, or .class files created by the Java compiler.

To automatically have Git ignore particular files, create a file named .gitignore (note that the filename begins with a dot) in the C:\users\name fol
der (where name is your MSOE login name).

NOTE: The .gitignore file must NOT have any file extension (e.g. .txt). Windows normally tries to place a files extension on a file you create from
File Explorer. To avoid this, create the file from within an editor (e.g. Notepad++ or UltraEdit) and save the file without a file extension).

Edit this file and add the lines below (just copy/paste them from this screen); these are patterns for files to be ignored (taken from examples
provided at https://github.com/github/gitignore.)

#ignore all files in the bin/ directory (takes care of .class
files)

bi n/

#i gnore autonatically generated backup files

*. bak

#ignore Enterprise Architect and Mcrosoft tenporary files
*.1db

~%

#ignore OS generated files

.DS_Store

.DS_Store?

Thunbs. db

#ignore all files that begin with a dot

*

do not ignore .classpath and . project
1. classpath
. project

Note: You can always edit this file and add additional patterns for other types of files you might want to ignore.

3. Configuring Git default parameters

Once Git is installed, there is some remaining custom configuration you have to do. Follow the steps below:

a. From within File Explorer, right-click on any folder. A context menu appears containing the commands "Git Bash here" and "Git
GUI here". These commands permit you to launch either Git client. For now, select Git Bash here.

b. Enter the command (replacing name as appropriate) git config --global core.excludesfile c:/users/nane/.
gitignore
® This tells Git to use the .gitignore file you created in step 2
® NOTE: You should simply copy/paste the commands shown here into the Git Bash window, in order to avoid typing
errors.
c. Atthe $ prompt, enter the command git config --global user.email "nanme@msoe. edu”
® This links your Git activity to your email address. Without this, your commits will often show up as "unknown login".
Replace name of course with your own MSOE email nhame.

d. Enter the command git config --global user.nane "Your Nane"
® Git uses this to log your activity. Replace "Your Name" by your actual first and last name.

e. Enter the command git config --global push.default sinple

® This ensures that all pushes go back to the branch from which they were pulled. Otherwise pushes will go to the master
branch, forcing a merge.

f. Enter the command git config --global nerge.tool w nnerge
® This configures Git to use the application WinMerge to resolve merging conflicts. You must have WinMerge installed on
your computer. Get WinMerge here.
g. Enter the following commands to complete the WinMerge configuration:
i. git config --global nergetool.w nnerge. nane W nMer ge

https://github.com/github/gitignore
http://user.name/
http://winmerge.org/downloads/
http://winmerge.org/downloads/

ii. git config --gl obal mergetool.w nnmerge.trustExitCode true

ii. If you install WnMrge to (for exanple) D:\WnMerge, enter
git config --global nergetool.w nnerge.cnd "/d/ W nMerge/ WnMer geU. exe
-u -e -dl \"Local\" -dr \"Renote\" \$LOCAL \ $REMOTE \ $MERGED"

iv. If you install WnMerge to (for exanple) C \ProgramFiles
(x86)\ WnMerge, enter
git config --global nergetool.w nnerge.cnd "\"C: \Program Fil es
(x86)\ W nMer ge\ W nMer geU. exe\" -u -e -dl \"Local\" -dr \"Renote\"
\ $LOCAL \ $REMOTE \ $MERGED"

h. Enter the command git config --global diff.tool w nnerge
® This configures Git to use the application WinMerge to differences between versions of files.
i. Enter the commands to complete the WinMerge diff configuration:

i. git config --global difftool.w nnerge. nane W nMerge
ii. git config --global difftool.w nnerge.trustExitCode true
iii. If you install WinMerge to (for example) D:\WinMerge, enter
git config --global difftool.w nnerge.cnd "/d/ WnMerge/ WnMergeU. exe
-u -e \$LOCAL \ $REMOTE"
iv. If you install WinMerge to (for example) C:\Program Files (x86)\WinMerge, enter
git config --global difftool.w nnerge.cnd "\"C:\Program Fil es
(x86)\ W nMer ge\ W nMer geU. exe\" -u -e \ $LOCAL \ $REMOTE"

4. Generating public/private key pairs for authentication

You will eventually be storing your project files on a remote Bitbucket server using a secure network connection. The remote server requires you
to authenticate yourself whenever you communicate with it so that it can be sure it is you, and not someone else trying to steal or corrupt your
files. Bitbucket and Git together user public key authentication; thus you have to generate a pair of keys: a public key that you (or your instructor)
put on Bitbucket, and a private key you keep to yourself (and guard with your life).

Generating the key pair is easy: From within File Explorer, right-click on any folder. From the context menu, select Git GUI Here. The following
appears:

b

4> Git Gui

- — mlﬁlg
——

Repository Help

Create Mew Repository

Clone Existing Repositony

Open Existing Repository

Open Recent Repository:
/My Docs/Documents/ MyProjects/Bitbucket/Stoplight

CGH

From the Help menu, select the Show SSH Key command. The following pup-up dialog appears:

http://user.name/

,
ﬁ‘fﬂur OpenSSH Public K‘_ u
| Nekestound

Copy To Clipboard

Initially, you have no public/private key pair; thus the message "No keys found" appears withing the dialog. Press the Generate Key button. The
following dialog appears:

-
74 OpenSSH __-—LEEM

Enter passphrase (empty for no passphrase):

DKl Cancel |

Do NOT enter a passphrase - just press OK twice. When you do, the dialog disappears and you should see something like the following - but your

generated key will be different:
r
4 Your OpenSSH Public Key [

{| Your key is in: ~/.ssh/id_rsa.pub iGenerate Ke:,r

ssh-rsa AAAABIMNzaClyc2EAAAADAQABAAABAQDrzFoEARzeRIgAT
cOZ4nShVoDCAAIWHP cSxRadHyht/2FkDaf O/ aiNh KhUPLull Gyp
AcOOhurlQzinsMMEUM Rb2 CvnFOBeUO 0 cmrHn VW QBsOud B5j05
OVFMtEzPIMNozsBdFmHGmMMNzBT1 McToehddV1KHEAgeShds4z1Y550)

£ 253 akd GOrWlbi/NifewolbunPWiXahORaxtkBw CUibS 7t CALIWU
dzjfjs53ZC+ofabGuLGWRLMS5f91zMqlr5C1 EokD0f11 Q265058+ 31T
U o8lqulBre QUGBS Mz akHsp2b)SInk6 Cil CTFEUWAWPOHcod
GvTDImh homick@MS0E-5CE3210KGE

Gopylo.Glipboad

The keys have been written into two files named id_rsa and id_rsa.pub in your c:/users/name/.ssh folder. Your instructor will show you how to
install the public key (id_rsa.pub) into your Bitbucket account's SSH keys field.

	Installing the Git client

