Flip-Flop Enhancements

Last updated 1/11/21

Flip-Flop Enhancements

- D Flip-Flop - SR Latch based

How many Transistors ???

Flip-Flop Enhancements

- D Flip-Flop - Pass Gate based
- D latch

src: Harris \& Harris

Flip-Flop Enhancements

- D Flip-Flop - Pass Gate Based

How many Gates ???

- Enhanced D Flip-Flops
- Enable - limit when the FF responds to the clk
- Set - force the FF into the $\mathrm{Q}=1$ state, independent of D
- Reset - force the FF into the $\mathrm{Q}=0$ state, independent of D
- Set/Reset can be asynchronous or synchronous
- Enable/Set/Reset - can be active high or active low

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Synchronous Enable - mux

D	Clk	EN	Q
x	x	0	$\mathrm{Q}_{\text {old }}$
x	0	1	$\mathrm{Q}_{\text {old }}$
x	1	1	$\mathrm{Q}_{\text {old }}$
x	\downarrow	1	$\mathrm{Q}_{\text {old }}$
D	\uparrow	1	D

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Synchronous Enable - gated clock

Requires EN only changes when clk is low

D	Clk	EN	Q^{\prime}
x	x	0	$\mathrm{Q}_{\text {old }}$
x	0	1	$\mathrm{Q}_{\text {old }}$
x	1	1	$\mathrm{Q}_{\text {old }}$
x	\downarrow	1	$\mathrm{Q}_{\text {old }}$
D	\uparrow	1	D

Normally clock gating is considered bad practice at the system level

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Synchronous Set

- Synchronous Reset - RST

Reset_bar - RSTB

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Synchronous Set/Reset - very uncommon

D	Clk	SET	RST	Q
x	0	x	x	$\mathrm{Q}_{\text {old }}$
x	1	x	x	$\mathrm{Q}_{\text {old }}$
x	\downarrow	x	x	$\mathrm{Q}_{\text {old }}$
D	\uparrow	0	0	D
x	\uparrow	1	-	1
x	\uparrow	-	1	0

SETB / RSTB operate in active low mode

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Asynchronous Set/Reset
- Due to the latching behavior of the DFF - require internal circuit changes

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Asynchronous Set
- Due to the latching behavior of the DFF - require internal circuit changes

Flip-Flop Enhancements

- Enhanced D Flip-Flops
- Asynchronous Set/Reset

D	Clk	SET	RST	Q
x	0	0	0	$\mathrm{Q}_{\text {old }}$
x	1	0	0	$\mathrm{Q}_{\text {old }}$
x	\downarrow	0	0	$\mathrm{Q}_{\text {old }}$
D	$\mathbf{\uparrow}$	0	0	D
x	x	1	-	1
x	x	-	1	0

SETB / RSTB operate in active low mode

Flip-Flop Enhancements

- Additional Flip-Flops
- T - Flip-Flop (Toggle)

T	Clk	Q^{\prime}
x	0	$\mathrm{Q}_{\text {old }}$
x	1	$\mathrm{Q}_{\text {old }}$
x	\downarrow	$\mathrm{Q}_{\text {old }}$
0	\uparrow	$\mathrm{Q}_{\text {old }}$
1	\uparrow	$\overline{\mathrm{Q}_{\text {old }}}$

Flip-Flop Enhancements

- Additional Flip-Flops
- JK - Flip-Flop

J	K	clk	Q^{\prime}
x	x	0	$\mathrm{Q}_{\text {old }}$
x	x	1	$\mathrm{Q}_{\text {old }}$
x	x	\downarrow	$\mathrm{Q}_{\text {old }}$
0	0	\uparrow	$\mathrm{Q}_{\text {old }}$
0	1	\uparrow	0
1	0	\uparrow	1
1	1	\uparrow	$\mathrm{Q}_{\text {old }}$

