Last updated 2/14/21

Typical Flip-Flop Circuit

 Need the data to get from point A to point B before the next clock edge occurs

- Flip-Flop Example
 - t_{PD} INV = 10ps
 - t_{cq} = 22ps
 - t_{setup} = 4ps
 - t_{hold} = 2ps

All values already account for loading

Shortest clock period Fastest clock speed

- Register Transfer Architecture
 - Timing

- Register Transfer Architecture
 - Timing

50 100 150 200 250 t(ps) CLK A - Dn1 X'Y'

t_{CQ_min} = 30ps $t_{CQ_{max}} = 80 ps$ t_{setup} = 50ps t_{hold} = 60ps

 $t_{pd_{min}}$ Logic = 25ps t_{pd_max}Logic = 40ps

$$t_{crit} = t_{CQ_{max}} + 3*t_{pd_{max}} + t_{setup}$$

 $t_{crit} = 80ps + 3*40ps + 50ps = 250ps$
 $F_{max} = 1/250ps = 4GHz$

CE 1911

Register Transfer Architecture

- Timing All va
 - $t_{CQ_min} = 30ps$ $t_{CQ_max} = 80ps$ $t_{setup} = 50ps$ $t_{hold} = 60ps$

 $t_{pd_{min}}Logic = 25ps$ $t_{pd_{max}}Logic = 40ps$

 $t'_{fast} = t_{CQ_min} + t_{pd_min}$ $t'_{fast} = 30ps + 25ps = 55ps$ $t'_{fast} < hold time \rightarrow unpredictable output$

- Register Transfer Architecture
- All values already account for loading Timing CLK CLK 200 250 50 100 150 t(ps) **FAST PATH** n1 CLK В A–D n1-n3 n2 Buffers added to fix X'hold time violation nЗ Y'src: Harris & Harris
 - $t_{CQ_min} = 30ps$ $t_{CQ_max} = 80ps$ $t_{setup} = 50ps$ $t_{hold} = 60ps$

t_{pd_min}Logic = 25ps t_{pd_max}Logic = 40ps $t'_{fast} = t_{CQ_min} + 2*t_{pd_min}$ $t'_{fast} = 30ps + 2*25ps = 80ps$ $t'_{fast} > hold time \rightarrow predictable output$

- Additional Timing Issues
 - Clock skew
 - Variation in clock edge arrival time
 - Due to path variations (capacitances)
 - Reduces maximum clock frequency
 - Can create hold time issues
 - Clock Gating
 - Creates clock skew

- Timing Verification
 - Static Timing Analysis
 - Testing for setup and hold violations
 - Check all paths
 - Estimate delays based on worst case assumptions
 - No specific input values are used
 - Logical operation IS NOT checked

- Timing Verification
 - Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop
 - Input and Output paths

How many static timing paths ?

- Timing Verification
 - Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop
 - Input and Output paths

© tj

- Timing Verification
 - Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop
 - Setup time violations
 - Hold time violations
 - Slack gap between estimated time and violation