Last updated 1/26/21

- How can we represent a memory
 - Consider an 8 bit memory structure (1 byte)
 - The 8 bits can be represented by a std_logic_vector signal mybyte: std_logic_vector(7 downto 0);
 - Want an array of these
 - Although physically the memory may have multiple columns
 - Logically we will treat the array as one long column

- How can we represent a memory
 - VHDL supports the concept of an array type type_name is array (range) of element_type;
 - A 20 element array of 1 bit values called my_type would be type my_type is array (0 to 19) of std_logic;
 - Notice the order of the array
 - We think of the first element of the array as element 0

0

Ы

19

- How can we represent a memory
 - VHDL supports the concept of an array type type_name is array (range) of element_type;
 - A 20 element array of 8 bit values called my_type would be
 type my_type is array (0 to 19) of std_logic_vector(7 downto 0);

0

2

- Notice the order of the array
 - We think of the first element of the array as element 0
- This looks like a memory !