CE 1911

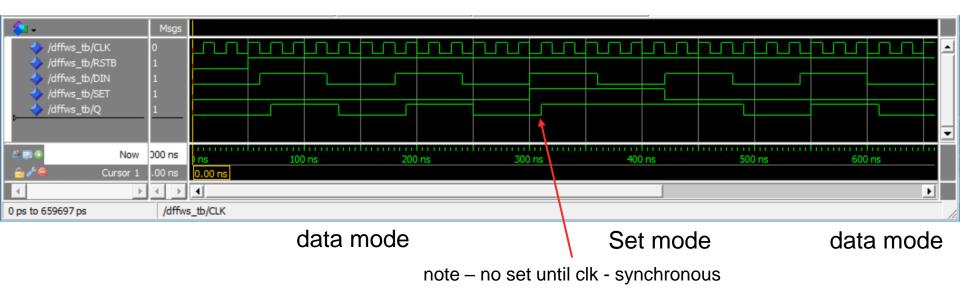
Homework 4

1 – Write behavioral VHDL code for a D-FF with asynchronous resetb and synchronous set. Provide code, test-bench and a simulation 50pts

```
-- created 2/1/2018
-- tj
___
-- rev 0
-- special DFF with synchronous set
_ _
-- Inputs: clk, rstb, din, set
-- Outputs: q
___
library ieee;
use ieee std_logic_1164 all;
entity dffwS is
     port (
       i_clk : in std_logic;
i_rstb : in std_logic;
i_din : in std_logic;
i_set : in std_logic;
       o_q : out std_logic
     ):
end entity;
architecture behavioral of dffwS is
               architecture
                  ~14 lines
```

testbench

-- created: 1/26/18 -- by: johnsontimoj -- rev: 0 Clock process -- testbench for dff with set -- of dffwS.vhdl library ieee; use ieee std_logic_1164 all; entity dffwS_tb is -- no entry - testbench end entity; architecture testbench of dffwS_tb is Reset process signal CLK: std_logic; signal RSTB: std_logic; signal DIN: std_logic; signal SET: std_logic; signal Q: std_logic; -- Run process run: process -- note - no sensitivity constant PER: time := 20 ns; begin _____ _____ -- Initialize inputs -- Component prototype DIN <= '0'; SET <= '0'; ------COMPONENT dffws PORT wait for 3*PER; -- wait for reset (i_clk : IN STD_LOGIC; i_rstb : IN STD_LOGIC; i_din : IN STD_LOGIC; i_set : IN STD_LOGIC; o_q : OUT STD_LOGIC -- verify normal operation DIN <= '1'; wait for 3*PER; DIN <= '0'; wait for 3*PER; DIN <= '1'; wait for 3*PER; DIN <= '0'; wait for 3*PER;); END COMPONENT; -- verify set operation SET <= '1': DIN <= '1'; wait for 3*PER; DIN <= '0'; wait for 3*PER; begin ------- Device under test (DUT) -- verify normal operation _____ SET <= '0'; SEl <= '1'; wait for 3*PER; DIN <= '0'; wait for 3*PER; DIN <= '1'; wait for 3*PER;</pre> DUT: dffwS port map(i_clk => CLK, i_rstb => RSTB, DIN <= '0'; wait for 3*PER; i_din => DIN, end process run; i_set => SET, o_q); => 0 _____ -- End test processes _____ -- Test processes end architecture:


50pts

1 – Write behavioral VHDL code for a D-FF with asynchronous resetb and

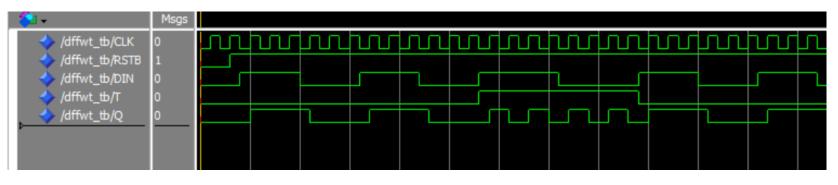
synchronous set. Provide code, test-bench and a simulation

1 – Write behavioral VHDL code for a D-FF with asynchronous resetb and synchronous set. Provide code, schematic, test-bench and a simulation 50pts

Simulation Results

2 – Write behavioral VHDL code for a special new FlipFlop you have conceived of – this FlipFlop has a second data input called Toggle(T). When T is low, the DFF operates normally, when T is high, the DFF ignores the D input and synchronously toggles the output. Provide code and a simulation 50pts

> -- created 2/1/2018 -- ti -- rev 0 -- special DFF with toggle mode -- Inputs: clk, rstb, din, t -- Outputs: q library ieee; use ieee std_logic_1164 all; entity dffwT is port (i_clk : in std_logic; i_rstb : in std_logic; i_din : in std_logic; i_t : in std_logic; o_q : out std_logic); end entity; architecture behavioral of dffwT is architecture ~14 lines


2 – Write behavioral VHDL code for a special new FlipFlop you have conceived of – this FlipFlop has a second data input called Toggle(T). When T is low, the DFF operates normally, when T is high, the DFF ignores the D input and synchronously toggles the output. Provide code and a simulation 50pts

testbench

```
-- Run process
   run: process -- note - no sensitivity list allowed
   begin
      -- Initialize inputs
      DIN <= '0';
      T <= '0';
      wait for 2*PER; -- wait for reset
      -- verify normal operation
      DIN <= '1'; wait for 3*PER;
DIN <= '0'; wait for 3*PER;
      DIN <= '1'; wait for 3*PER;
      DIN <= '0': wait for 3*PER:
      -- verify toggle operation
      T <= '1';
      DIN <= '1'; wait for 4*PER;
      DIN <= '0': wait for 4*PER:
      -- verify normal operation
      T <= '0':
      DIN <= '1'; wait for 3*PER;
      DIN <= '0'; wait for 3*PER;
DIN <= '1'; wait for 3*PER;
      DIN <= '0'; wait for 3*PER;
   end process run;
   -- End test processes
end architecture:
```

2 – Write behavioral VHDL code for a special new FlipFlop you have conceived of – this FlipFlop has a second data input called Toggle(T). When T is low, the DFF operates normally, when T is high, the DFF ignores the D input and synchronously toggles the output. Provide code and a simulation 50pts

Simulation Results

data mode

toggle mode

data mode