CE 1911

Homework 5

1 - Write behavioral VHDL code for a special 4 bit wrapping up counter with an additional input called mode. If mode is 0 the counter counts normally, if mode is 1 the counter operates as a mod 12 counter. Code, schematic, simulation 50pts

```
-- counter_se1_mod12_4bit.vhd1
-- created 3/27/18
-- tj
-- rev 0
--------------------------------------------
-- 4 bit counter with mod12 mode for hw problem
-------------------------------------------
-- Inputs: rstb, clk, mode
-- Outputs: cntl[3:0]
--
library ieee;
use jeee.std_1ogic_1164.a11;
use ieee.numeric_std.al1;
entity counter_se1_mod12_4bit is
    port (
    i_clk : in std_logic;
    i_rstb : in std_logic; -- 0 for mod16, 1 for mod 12
    o_cnt : out std_logic_vector(3 downto 0)
    );
end entity;
architecture behavioral of counter_se1_mod12_4bit is
    -- internal signals
    signa1 cnt_sig: unsigned(3 downto 0);
```

Approx 17 lines of code

```
-- Output logic
    o_cnt <= std_logic_vector(cnt_sig);
end behaviora1;
```

1 - Write behavioral VHDL code for a special 4 bit wrapping up counter with an additional input called mode. If mode is 0 the counter counts normally, if mode is 1 the counter operates as a mod 12 counter. Code, schematic, simulation 50 pts

-- Run process
run: process
begin
-- Initialize inputs
MODE $==$ 'O'.
MODE <=
wait for $3 *$; PER;
wait for 3 *PER;
-- verify mod16
wait for 20 *PER;
-- verify mod
MODE <= '1';
wait for $20 * P E R$
-- reset to mod16
MODE <= 'O';
wait for 20 *PER;
end process run;

Testbench

1 - Write behavioral VHDL code for a special 4 bit up counter with an additional input called mode. If mode is 0 the counter counts normally, if mode is 1 the counter operates as a mod 12 counter. Code, schematic, simulation 50 pts

Simulation Results

2 - Modify the behavioral VHDL code for the L/R shift register to add an additional input amt(A). When A is low, the shift register shifts by 1 spot, when A is high the shift register shifts by 2 spots. Instead of shifting in Din, rotate the contents of the register. Reset should put the register in the 10010110 state. Provide code and a simulation. There is no Din input!

50pts

```
--
-- shiftreg_7r_12_nbit.vhd1
-- created 3/27/18
-- tj
-- rev 0
--------
--
-- n bit 1/2 bit L/R shift register hw problem
------------------------------------------
-- Inputs: rstb, clk, amt, dir, shift
-- Outputs: reg_out[7:0]
--
library ieee;
use ieee.std_logic_1164.al1;
use ieee.numeric_std.ali;
entity shiftreg_lr_12_nbit is
    generic(
        N: natural:= 8;
    port (
        i_clk :
        i_rstb :
        i_amt : in std_logic;
        i_shift: in std_logic; -- - 0 for 1, 1 for no shift
        i_dir: in std_logic; -- 0 for left, 1 for right
        o_reg_out : out std_logic_vector((N - 1) downto 0)
    );
end entity;
```

Approx 8 lines of code change between the example and the solution

2 - Modify the behavioral VHDL code for the L/R shift register to add an additional input $\operatorname{amt}(A)$. When A is low, the shift register shifts by 1 spot, when A is high the shift register shifts by 2 spots. Instead of shifting in Din, rotate the contents of the register. Reset should put the register in the 10010110 state. Provide code and a

```
[---- shiftreg_lr_12_nbit_tb|.vhd1 n
```

```
-- Run process -- note - no sensitivity
    begin
        -- Initialize inputs
        AMT <= 0';
        SHIFT <= 'O';
        DIR <= '0';
        wait for 3*PER; -- wait for reset
        -- verify no shift
        wait for PER*2;
        -- verify shift 1t 1
        SHIFT <= '1';
        AMT <= '0'
        DIR <= '0';
            wait for PER*4;
        -- verify shift 7t 2
        SHIFT <= '1';
        AMT <=
        DIR <=
        wait for PER*4;
        -- verify shift rt 1
        SHIFT <= '1';
        AMT
        DIR <=
        wait for PER*4;
        -- verify shift rt 2
        SHIFT <= '1';
        AMT <= '1';
        DIR <= '1';
        wait for PER*4;
    end process run;
-- End test processes
```

2 - Modify the behavioral VHDL code for the L/R shift register to add an additional input amt(A). When A is low, the shift register shifts by 1 spot, when A is high the shift register shifts by 2 spots. Instead of shifting in Din, rotate the contents of the register. Reset should put the register in the 10010110 state. Provide code and a simulation 50pts

Simulation Results

S.	\|											
1shiftrea Ir 12 nbit tb/CLK 1. Ishiftreg Ir 12 nbit th/RSTB		-	-	-	\checkmark	-	-	-	\cdots	\checkmark	「	
Brameot	One	Hemoro			covo	Fioulour	\%ox	dion Olo		\%ovem	(10) 0 OV	-
Nom	Sons	mor			Homs		ispm			Soss		2isher

10010110 no shift shift left by $1 \quad$ shift left by 2

start

shift right by 1

