CE 1911 Week 7 Lab: Advanced FSM HDL Design

	Name:	
Objectives		
•	esign a complex Finite State Machines using VHDL	
	evelop a DE10 implementation using switches and seven segment displays	
• 50	velop a DE10 implementation using switches and seven segment displays	student
Prelab		check off
	eate a working directory and project in Quartus for W7Lab	
	eview HDL FSM class notes	
• Re	view CE1901 notes on using the seven segment displays	
	eate a state transition diagram for your design	
Assignmeı	nt	
•	ssignment involves the development of a vending machine. Our vending mach	nine takes
nicke	ls, dimes and quarters and vends one of 5 items. Two of the items are chips an	d 3 are candy
bars.	The chips cost 50 cents and the candy bars cost 60 cents.	
• Th	e display (7-seg) indicates the total amount inserted into the machine.	
• If	an item is selected and insufficient funds have been entered the display will in	dicate dash
da	sh, the required amount, and 2 more dashes, then return to displaying the am	ount already
en	tered.	
• If	an item is selected and there is a sufficient amount entered the display will inc	licate the word
've	end' followed by a space and the appropriate number 1-5. In addition, an LED	will light
со	rresponding to the selected item. The machine will then return to the ready st	ate.
• Th	e machine does not give change, but a button will be assigned to cancel the sa	ale. When this
oc	curs the display indicates 'cancel' and all 5 product LEDs light up. The machine	will then return
to	the ready state and all money is lost.	
Input	s: rstb, clk, 4 switches(Nickle, Dime, Quarter, Cancel), 5 switches (chip1, chip2,	candy1,
candy	v2, candy3)	
Outp	uts: 7 seg display, 5 LEDS (one for each item)	
Part 1	.: Define your states and outputs. Create a state diagram for your finite state	machine.
	No checkoff will be allowed without this.	
	*** Try to get your state machine to 5 or 6 states ***	
	Hint: Create a separate process for keeping track of the current cash value	

- Part 2: Create a VHDL implementation of your design. Simulate your design showing the following 4 scenarios:
 - 1) 5 dimes and chip1 selected
 - 2) 4 dimes, 5 nickels and candy 2 selected

- 3) 2 quarters and candy 1 selected, followed by 1 dime and candy 1 selected
- 4) 1 nickel, 1 dime, 1 quarter and chip 2 selected followed by 1 nickel and chip 2 selected followed by cancel
- Part 3: Create a DE10 implementation of your design. Use the clock divider circuit to slow down the system to 1 clk/sec. Any combinations of inputs can be chosen by your instructor to test the design.

MAPPING:

rstb, Nickle, Dime, Quarter, Cancel, chip1, chip2, candy1, candy2, candy3 → SW 7 seg display 5 LEDS (one for each item)

Check Off

•	Show your state diagram	10%
•	Demo and document your simulations	40%
•	Demo and document your DE10 implementation	50%

Lab Report (informal)

- Due at 4:00 pm, Monday after lab in the box
- Include a properly documented informal lab report.

AbCdEF9HI JHLT nOP9r5EUJYHY2 O 1234567890