Last update 1/15/21

- Fundamentals
 - AC Characteristics
 - T_{rise} and T_{fall} : 10% 90 %

- Fundamentals
 - AC Characteristics
 - Vout = $V_{DD}(e^{-t/RC})$
 - Vout = $V_{DD}(1 e^{-t/RC})$

• R

the internal equivalent resistance of the N_{MOS} or P_{MOS} devices + the distributed resistance of the wires (negligible for our purpose)

C
is the internal capacitance of the N_{MOS} and P_{MOS} Drains (C_{DRAIN})
+
the Gate capacitance of any logic gates being driven
+ (C_{LOAD})
the capacitance of any connecting wires

V_{DD}

Gnd

- Fundamentals
 - AC Characteristics
 - Vout = $V_{DD}(e^{-t/RC})$
 - Vout = $V_{DD}(1 e^{-t/RC})$

- R and C_{DRAIN} are gate design dependent and known
 - Fixed for any given gate
- C_{LOAD} = capacitance of driven gates + interconnect
 - Circuit dependent

- Gate level timing
 - Each gate input has an equivalent input load factor
 - Models the input capacitance
 - Load equivalent (LE)
 - Technology / Process dependent

5

- Gate level timing
 - Each gate has internal delay
 - Assumes a fixed external load 1 LE
 - Circuit dependent but fixed
 - Technology / Process dependent

© tj

- Gate level timing
 - Each gate has a variable delay factor r
 - Function of the gate's drive capability
 - Modifies the circuit delay based on the amount of loading
 - Circuit dependent

- Gate level timing
 - Long wires have enough capacitance to impact delays
 - Model long wires in terms of load equivalents (LEs)
 - Modifies the circuit delay based on the amount of loading
 - Circuit dependent

© tj

Digital Circuit Timing

Gate level timing

t _{pd} = t _{fixed_delay} + r _{variable_delay_factor} * Load Equivalents Standard									
Gate	INV	2-NAND	2-NOR	4-NAND	4-NOR				
Input load factor	0.8	1.0	1.0	1.75	1.75				
Fixed delay factor	50ps	65ps	65ps	80ps	80ps				
Variable delay factor (r)	5ps/LE	8ps/LE	8ps/LE	12ps/LE	12ps/LE				

t_{pd} = 65ps + 8ps/LE*(0.8LE + 1.75LE) = 84.5ps**

** we are assuming interconnect capacitance is negligible

Digital Circuit Timing

Gate level timing

t _{pd} = t _{fixed_delay} + r _{variable_delay_factor} * Load Equivalents									
Gate	INV	2-NAND	2-NOR	4-NAND	4-NOR				
Input load factor	0.8	1.0	1.0	1.75	1.75				
Fixed delay factor	50ps	65ps	65ps	80ps	80ps				
Variable delay factor (r)	5ps/LE	8ps/LE	8ps/LE	12ps/LE	12ps/LE				

t_{pd} = 65ps + 8ps/LE*(0.8LE + 1.75LE + 3.0LE) = 109.4ps