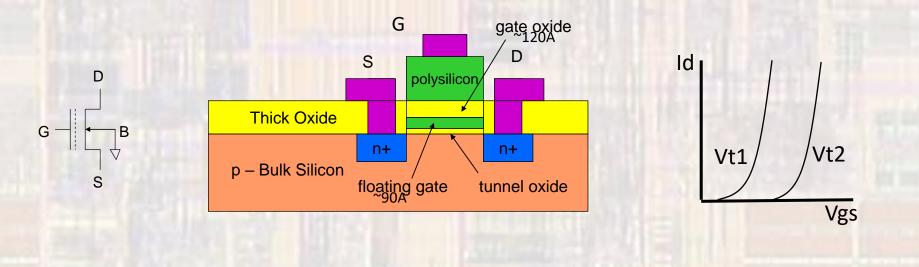
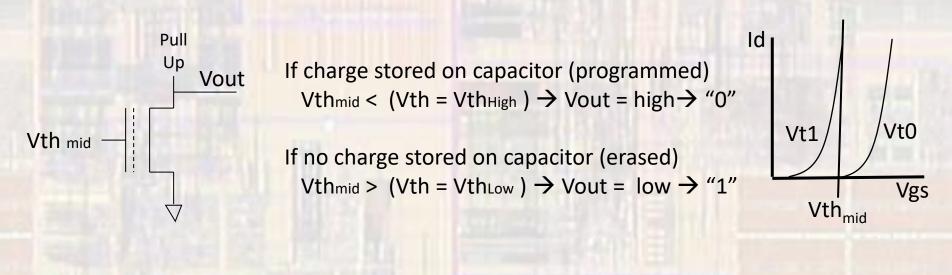

Last updated 1/26/21

- Flash Memory Flash, Nand Flash, Nor Flash
 - Key Attributes
 - Sequential vs. Random Access
 - Read only vs. Read/Write imited write
 - Static s. Dynamic
 - Volatile vs.non-Volatile
 - Key Measures
 - Density +
 - Speed
 - Power
 - Cost / bit +


- Flash Memory basics
 - Memory cell (1 bit) is based on charge stored on a floating capacitor
 - The capacitor modifies the threshold voltage of a MOSFET
 - with negative charge stored need higher gate voltage to turn on the MOSFET
 - Creates 2 possible threshold voltages

Different for NOR and NAND



- Flash Memory NOR
 - Creates 2 possible threshold voltages

Vth High is required to turn on the MOSFET if charge is stored Vth Low is required to turn on the MOSFET if no charge is stored

- Flash Memory NOR
 - Cell read
 - Place a voltage on the gate midway between Vth High and Vth Low
 - Use the circuit to determine if the MOSFET is on or off
 - Erased state no charge stored = "1"
 - Programmed state charge stored = "0"

- Flash Memory
 - Programming
 - All cells start out with no charge stored = "1"
 - Individual cells can be programmed to "0"
 - A block erase is required to change cells from "0" to "1"
 - Eg.

byte: 1011 1100 → 1000 1100

byte: 1011 1100 ¥1111 1100

Flash Memory

- NAND Flash
 - Page Write
 - Block Erase
 - More dense
 - Fast (required) sequential access
 - Used as file storage memory (Flash Drives)

- NOR Flash
 - Byte/word Write
 - Block Erase
 - Less dense
 - Fast random access
- Used as program memory

- Flash Memory
 - Damage wear out
 - The tunneling process damages the oxide layer
 - Some electrons get trapped in the oxide
 - Physical damage to the lattice
 - Limits the number of write/erase cycles
 - 10K 1M cycles
 - Wear leveling
 - Remap the external addresses to new physical blocks on erases
 - Dynamic do this as changes occur
 - Static do this to little used blocks to make them available
 - Allows all blocks to approach their failure limit

- Flash Memory
 - Multi-Level Cell
 - Instead of just having 2 threshold voltages allow for 4 or 8
 - 4 \rightarrow 2 bit MLC, 8 \rightarrow 3bit MLC
 - All aspects of the design get harder (programming, read, wear leveling, speed) → ECC
 - Error Correction Coding ECC
 - Additional bits are used to detect and correct bit level errors in a word

- Other Technologies
 - Phase Change Memory PRAM
 - Ferro-Magnetic Ram FeRAM
 - Magneto-resistive Ram MRAM