Last updated 1/25/21

Memory Taxonomy

- Memory Taxonomy
 - Key Attributes
 - Sequential vs. Random Access
 - Sequential must traverse the memory to the location you want
 - Audio cassette tape
 - Random Access can directly access the location you want
 - Track selection on a CD/DVD
 - Read only vs. Read/Write
 - Read only data stored permanently in the memory
 - Commercial Blu-ray
 - Read/Write data can be modified
 - DVD R/W

- Memory Taxonomy
 - Key Attributes cont'd
 - Static vs. Dynamic
 - Static retains it's value as long as power is supplied
 - Current location in a paused video
 - Dynamic looses it's value over time if nothing is done to protect it even though power is applied
 - Air in a soccer ball (with a pump attached but not operating)
 - Volatile vs. non-Volatile
 - Volatile looses it's value when power is removed
 - Current location in a paused video
 - Non-volatile retains it's value even when no power is supplied
 - Thumb drive

- Memory Taxonomy
 - Key Measures
 - Density
 - amount of storage space
 - Speed
 - Read or Write speed
 - Can be different for first access vs. follow on accesses
 - Power
 - Static powered up but not doing anything
 - Dynamic reading or writing
 - Cost / bit

- Memory Taxonomy
 - Terminology WARNING WARNING WARNING
 - b bit
 - B Byte

- Memory Taxonomy
 - Terminology WARNING WARNING WARNING
 - K, M, G, T have special meaning in digital technology
 - sometimes replaced with Ki, Mi, Gi, Ti
 - 1Mb can mean either 1,048,576 bits

or 1,000,000 bits

Binary						
Value			<u>IEC</u>		<u>JEDEC</u>	
1024	2 ¹⁰	Kibit	kibibit	7	Kbit	kilobit
1024 ²	2 ²⁰	Mibit	<u>mebibit</u>		Mbit	megabit
1024 ³	2 ³⁰	Gibit	<u>gibibit</u>	N	Gbit	gigabit
1024 ⁴	2 ⁴⁰	Tibit	tebibit			-
1024 ⁵	2 ⁵⁰	Pibit	<u>pebibit</u>			-
1024 ⁶	2 ⁶⁰	Eibit	<u>exbibit</u>			-
1024 ⁷	2 ⁷⁰	Zibit	<u>zebibit</u>			-
1024 ⁸	2 ⁸⁰	Yibit	yobibit			-
		÷				src: wikipedia

You must determine the meaning in any given situation

- Memory Taxonomy
 - Terminology WARNING WARNING WARNING
 - 16Gb Flash drive when checked on your PC may read 14.9Gb

- Basic Memory Topology
 - Array of single bit cells
 - Row decoder chooses 1 row
 - Rows are typically called wordlines
 - Columns are typically called bitlines
 - Non optimal
 - Physical implementation
 - Array
 - Decoder
 - Speed
 - Column capacitance very large

8 bit output

1KB 1024 rows x 8 cols

ADDRESS

- General Memory Topology
 - Array of n bit cells
 - Row decoder chooses 1 row
 - Column decoder chooses one N bit column
 - 1,4,8,16,3<mark>2,64,128,... bits/co</mark>lumn

- General Memory Topology
 - Example
 - 16Mb memory in a x4 configuration

x4 means each column is 4 bits or each address points to 4 bits
16Mb → 16,777,216 bits
16Mb in a x4 configuration → 4 bits / address → 4,194,304 - individual addresses
4,194,304 addresses → 22 address bits

x4 means 4 bit cells for every column Assuming a square memory array and a square bit cell \rightarrow 4 times as many rows as columns

22 address bits \rightarrow 12 bits of row address and 10 bits of column address

General Memory Topology

1024 columns of 4 bit cells \rightarrow 4096 bit cells

- General Memory Topology
 - Reduce I/O by sharing the address inputs between Row addresses and Column addresses
 - 22 bit addr \rightarrow 12 bit addr + RAS and CAS \rightarrow 14 wires
 - RAS Row Address Strobe (current address is for row decode)
 - CAS Column Address Strobe (current address is for column decode)

- General Memory Topology
 - Reduce I/O by sharing the address inputs between Row addresses and Column addresses
 - 22 bit addr \rightarrow 12 bit addr + RAS and CAS \rightarrow 14 wires
 - RAS Row Address Strobe (current address is for row decode)
 - CAS Column Address Strobe (current address is for column decode)

- Performance Issues
 - Can 1 bad array element ruin an entire part?
 - Use redundant rows and columns in the array
 - Any bad cells are programmed out at final test
 - Some Memory Management Units (MMUs) can detect poorly performing calls and modify the virtual to physical address translation to remove them from the memory map