Last updated 4/14/21

- Static Random Access Memory SRAM
 - Key Attributes
 - Sequential vs. Random Access
 - Read only vs. Read/Write
 - Static s. Dynamic
 Volatile vs. non-Volatile
 - Key Measures
 - Density -
 - Speed +
 - Power
 - Cost / bit -

- SRAM Circuit
 - Memory cell (1 bit) is based on a feedback circuit
 - Bit value is retained as long as power is maintained
 - Fastest read/write (R/W)
 - Highest power
 - Lowest density
 - Used in caches and small data memories

- SRAM Circuit
 - Memory cell (1 bit) is based on a feedback circuit
 - Bit value is retained as long as power is maintained

© tj

- SRAM Write
 - Read Enable (RE) disabled (low)
 - Place BO, B1, B2, B3 on inputs (data in)
 - Apply Address
 - Select the desired word line (high)
 - Select the desired column to input to
 - Strobe write enable bar (WE) low
 - Bit lines override the bit cell inverters and store the new value in the cell

5

6

CE 1911

- Read
 - Write enable bar (WE) high
 - inverters tristated
 - Read Enable (RE) high
 - Apply Address
 - Select the desired word line (high)
 - Select the desired column to output
 - Bit cell inverters drive the bit lines and sense amplifiers read the value

8

CE 1911

© tj

• SRAM – Timing

- SRAM Complex configuration
 - Array Layout 4Mb, in a x8 (4Mb, x8)
 - No address line sharing

- SRAM Complex configuration
 - Array Layout 4Mb X 8 (4Mx8b) (implicit x1 format)
 - No address line sharing

