Last updated 1/18/21

- Combinational Logic
 - Outputs are dependent only on current inputs
 - Output changes can be triggered by any input change

- Sequential Logic
 - Outputs are dependent on inputs and current STATE
 - State
 - Collection of outputs and intermediate values stored within the system
 - Requires some sort of memory
 - Asynchronous Output changes can be triggered by some input changes
 - Synchronous Outputs changes triggered by a synchronous event – usually a clock

- State memory elements
 - Bi-stable circuit
 - Latches
 - Flip-flops
 - Registers
 - Memories
 - ROM
 - RAM
 - SRAM
 - SDRAM
 - Flash

Typical Flip-Flop Circuit

 Need the data to get from point A to point B before the next clock edge occurs

- Register Transfer Architecture
 - Synchronous System
 - Blocks of combinational logic and registers
 - Every intermediate state is captured in a register

- Register Transfer Architecture
 - Synchronous System
 - Blocks of combinational logic and registers
 - Every intermediate state is captured in a register
 - Many I/O paths

- Register Transfer Architecture
 - Synchronous System
 - Blocks of combinational logic and registers
 - Every intermediate state is captured in a register
 - Many I/O paths
 - Many feedback paths

© tj

Data must make it from A to B before the next active clock edge (rising)

