Last updated 4/14/21

Instruction Format

- Decode / Register Access
 - Instruction Decode
 - Logic to decode the instruction
 - Pull off the relevant bits from the instruction

Create logic to drive control signals to other blocks

- Decode / Register Access
 - Register File
 - Series of registers
 - 2 read multiplexors to select one of the registers for one of 2 outputs
 - Write multiplexor to choose one register to write to
 - Write data input
 - Write enable (or WE_b)

- Decode / Register Access
 - Register File implementation comments
 - Instruction bit mapping to select registers
 - Wire specific bits from the instruction to the address ports of the register file.
 - 4 registers → 2 bits of address
 - Each register 8 bits wide
 - No rstb signal

Execute

- ALU executes all arithmetic and logical instructions
- Inputs are Register outputs
- Control is decoded from instructions

Instruction

1 0

Instruction

1

0

ST

Reg 2

0

0

- Memory Access
 - Load / Store Instructions
 - R/W from registers to data memory
 - Address
 - Pre-stored in one of the registers
 - Accessed from reg file "Read Data 1"
 - Added to the immediate value in the instruction (zeros)
 - Write Data
 - Pre-stored in one of the registers
 - Accessed from reg file "Read Data 2"
 - Synchronous
 - Read Data
 - Asynchronous read

Immediate Value

Immediate Value

0

 $MEM(Reg1) \leftarrow Reg2$

0

0

0

0 0

0

W Reg

0 0 0

8

- Memory Access
 - Data memory implementation comments
 - Inferred RAM
 - ?? in a x8 configuration
 - → asynchronous address
 - → asynchronous read
 - \rightarrow synchronous write

Instruction

0 1

IMM

0 0

0 1

0 0 0 0 0

0 0

- Memory Access
 - Load Immediate Instruction
 - Load a register from the program memory
 - Value
 - Stored in the instruction
 - Sign-extended from 6 bits to 8 bits
 - OR'd with zero in the ALU
 - Uses the writeback mechanism to store the value in a register

Wreg
"imm value"

• Write Back

W Reg

Immediate Value

0

Reg 2

Reg 1

Instruction

- Write results or memory value back to a register
- Write data
 - Comes from ALU (result or Idi)
 - or
 - Comes from data memory (ld)
- Synchronous

- Missing Pieces
 - Program control elements
 - Branches
 - Jumps
 - Hazards

• Full Data path

Replace with sequencer

