Single Cycle Processor Data Path

Last updated 4/14/21

Single Cycle Processor - Data Path

- Instruction Format

	ction	Reg 1	Reg 2	W Reg	Immediate Value
or	0000	Reg/Reg Wreg \leftarrow Reg1 fn Reg2 MEM IMM Wreg \leftarrow MEM $($ Reg1) MEM $($ Reg1) \leftarrow Reg 2 Wreg \leftarrow "imm value"			
and	0001				
nor	0010				
nand	0011				
add	0100				
sub	0101				
slt	0110				
Id	1000				
st	1001				
Idi	1100				
nop	1111				

Single Cycle Processor - Data Path

- Decode / Register Access
- Instruction Decode
- Logic to decode the instruction
- Pull off the relevant bits from the instruction

Instruction				Reg 1	Reg 2	W Reg	Immediate Value						
0	1	0	1	0	0	0	1	1	0	0	0	0	0

- Create logic to drive control signals to other blocks

Single Cycle Processor - Data Path

- Decode / Register Access

- Register File
- Series of registers
- 2 read multiplexors to select one of the registers for one of 2 outputs
- Write multiplexor to choose one register to write to
- Write data input
- Write enable (or WE_b)

Single Cycle Processor - Data Path

- Decode / Register Access

- Register File - implementation comments
- Instruction bit mapping to select registers
- Wire specific bits from the instruction to the address ports of the register file.
- 4 registers $\rightarrow 2$ bits of address
- Each register 8 bits wide
- No rstb signal

Single Cycle Processor - Data Path

- Execute
- ALU executes all arithmetic and logical instructions
- Inputs are Register outputs
- Control is decoded from instructions

Single Cycle Processor - Data Path

- Memory Access

- Load / Store Instructions
- R/W from registers to data memory

- Address
- Pre-stored in one of the registers
- Accessed from reg file "Read Data 1"
- Added to the immediate value in the instruction (zeros)
- Write Data
- Pre-stored in one of the registers
- Accessed from reg file "Read Data 2"
- Synchronous
- Read Data
- Asynchronous read

Single Cycle Processor - Data Path

- Memory Access
- Data memory implementation comments
- Inferred RAM
- ?? in a x8 configuration
\rightarrow asynchronous address
\rightarrow asynchronous read
\rightarrow synchronous write

Single Cycle Processor - Data Path

- Memory Access

- Load Immediate Instruction
- Load a register from the program memory
- Value
- Stored in the instruction
- Sign-extended from 6 bits to 8 bits

- OR'd with zero in the ALU
- Uses the writeback mechanism to store the value in a register

Single Cycle Processor - Data Path

- Write Back

- Write results or memory value back to a register
- Write data
- Comes from ALU (result or Idi) or
- Comes from data memory (Id)
- Synchronous

Single Cycle Processor - Data Path

- Missing Pieces
- Program control elements
- Branches
- Jumps
- Hazards

Single Cycle Processor - Data Path

- Full Data path

Replace with sequencer

