Last updated 1/10/20

- These slides introduce the basics of State Machines
- Upon completion: You should be able to identify circuits that form a state machine and differentiate between the two types of state machines

- Synchronous Sequential Circuit
 - Synchronous
 - Outputs change on a clock edge
 - One common clock
 - Sequential
 - Involves memory
 - Register(s)
 - 2 generalized types
 - Finite State Machines
 - Pipelined Machines

- Synchronous Sequential Circuit
 - Rules
 - Every element is either a
 - Register
 - Combinational Logic
 - At least one element is a register
 - All registers are driven by the same clock
 - Every cyclic path contains at least one register

Synchronous Sequential Circuit

- Synchronous Sequential Circuit
 - State
 - Collection of all unique values held in memory elements
 - 1 D-FF can hold 2 states (0 or 1)
 - 4 D-FFs can hold 16 states (0000, 0001, 0010, ... 1111)
 - State Variable
 - Ordered collection of memory elements
 - Can hold any of 2ⁿ states
 - 1 D-FF can have 1 state variable (Q)
 - 4 D-FFs can have 1 state variable (S) with 16 possible values

Actually, there are many more possible values – what are they?

- Synchronous Sequential Circuit
 - State / Next State

CE 1911

- State (S) current value of a State Variable
- Next State (S') future value of a State Variable (next clock cycle)
- If we know what S is, we can figure out what S' is
- If we know what S' is, we know what S <u>WILL BE</u> after the next clock

- Finite State Machine
 - Finite
 - n storage elements (D-FFs) \rightarrow 2ⁿ states not infinite
 - State
 - Meets the requirements for a synchronous sequential circuit
 - 2 common types
 - Mealy Machine
 - Moore Machine

- Finite State Machine
 - Moore Machine
 - Outputs depend only on the current state(S)

- Finite State Machine
 - Moore Machine
 - Changes in the input cause S' to change
 - When S' changes then the 'next state' S will be different than the current state S

- Finite State Machine
 - Mealy Machine
 - Outputs depend on the current state(S) and the inputs

- Finite State Machine
 - Mealy Machine
 - Changes in the input cause S' to change
 - When S' changes then the 'next state' S will be different than the current state S

