BJT Reverse Active

Last updated 2/21/22

BJT Reverse Active

- Review

arrow points in direction
of the $\mathrm{P}-\mathrm{N}$ junction
of the B/E diode

- Reverse Active Mode - NPN
- B-E junction reverse biased, C-B junction forward biased

- With a short base - the electrons injected into the base get swept into the emitter by the electric field
- In the ideal case all of the electrons would be swept into the emitter, leaving only a small hole current in the base
- In the real case - additional factors lead to a small (relative to collector) base current

BJT Reverse Active

- Reverse Active Mode - NPN
- B-E junction reverse biased, C-B junction forward biased
- The Emitter acts as the Collector and the Collector acts as the Emitter
- Emitter Current
- By convention we reference all the the currents to the emitter

$I_{E}=I_{S}\left[e^{\left(\frac{V_{B C}}{n V_{T}}\right)}\right]$
for $V_{B E}>$ few V_{T}, n and I_{S} device dependent
$I_{B}=\frac{I_{E}}{\beta}=\frac{1}{\beta} I_{S}\left[e^{\left.\left(\frac{V_{B C}}{n V_{T}}\right)\right]}\right.$
$I_{C}=\frac{1}{\alpha} I_{E}=\frac{1}{\alpha} I_{S}\left[e^{\left.\left(\frac{V_{B C}}{n V_{T}}\right)\right]}\right.$
β_{R} is much smaller than β_{F} due to the relative doping of C and E

$$
I_{E}=\beta I_{B}
$$

$$
I_{C}=I_{E}+I_{B}
$$

- Reverse Active Mode - PNP
- B-E junction reverse biased, C-B junction forward biased

- With a short base - the holes injected into the base get swept into the emitter by the electric field
- In the ideal case all of the holes would be swept into the emitter, leaving only a small electron current in the base
- In the real case - additional factors lead to a small (relative to emitter) base current

BJT Forward Active

- Forward Active Mode - PNP

- B-E junction reverse biased, C-B junction forward biased
- The Emitter acts as the Collector and the Collector acts as the Emitter
- Emitter Current
- By convention we reference all the

$I_{E}=I_{S}\left[e^{\left(\frac{V_{C B}}{n V_{T}}\right)}\right]$
for $V_{B E}>$ few V_{T}, n and I_{S} device dependent

$$
I_{B}=\frac{I_{E}}{\beta}=\frac{1}{\beta} I_{S}\left[e^{\left.\left(\frac{V_{C B}}{n V_{T}}\right)\right]}\right.
$$

β_{R} is much smaller than β_{F} due to the relative doping of C and E

$$
I_{C}=\frac{1}{\alpha} I_{E}=\frac{1}{\alpha} I_{S}\left[e^{\left.\left(\frac{V_{C B}}{n V_{T}}\right)\right]}\right.
$$

$$
I_{E}=\beta I_{B}
$$

$$
I_{C}=I_{E}+I_{B}
$$

