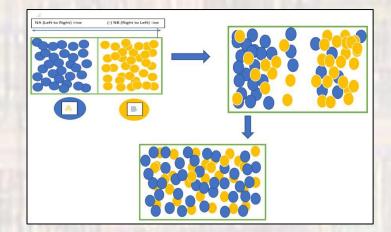

Last updated 2/10/23

- Mobility
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Conduction electrons represent an excess electron in the shared 3sp band
 - Free electron generation requires breaking a relatively weak bond
 - Movement is limited by collisions

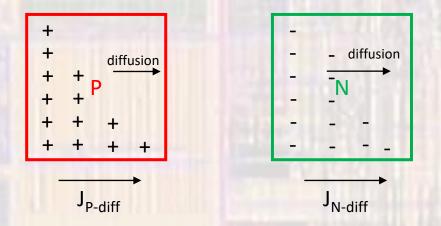
SI atom
Donor atom
Electron
Electron motion
Shared electron

- Mobility
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - Lots of physics here but to simplify for Si
 - Valence holes represent a missing electron in the shared 3sp band
 - Hole generation requires breaking a relatively strong "normal" electron bond
 - Electrons must 'find' an open bond to move

- SI atom
- O Acceptor atom
- Electron
- Electron motion
- Hole motion
 - Shared electron


- Mobility
 - Measure of how easy(hard) it is to move a charged particle through a solid
 - For Si:

$$\mu_n \approx 1500 \frac{cm^2}{Vs}$$
$$\mu_p \approx 500 \frac{cm^2}{Vs}$$


This 3:1 ratio is critical to understand for good electronic circuit design

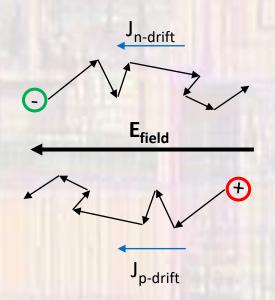
- Diffusion
 - Process in which particles re-distribute due to their random thermal motion
 - In the end the particles will be uniformly distributed

- Diffusion electrons and holes
 - Charged particles in motion → current
 - Current density: J (A/cm²)

 $J_{P-diff} = -qD_P\nabla_P \qquad J_{N-diff} = qD_N\nabla_N$

D – diffusion constant (cm²/sec)

 ∇ – concentration gradient


 $D_N \le 36 \text{ cm}2/\text{s}$ $D_P \le 12 \text{ cm}2/\text{s}$

Note: ∇_{P} and ∇_{N} are both negative in this illustration

- Drift
 - Motion of a charged particle due to an electric field
 - Subject to collisions and random thermal motion

• Drift

 $J_{p-drift} = qp\mu_p E$ $p - hole \ density$ $\mu_p - hole \ mobility$ $J_{n-drift} = qn\mu_n \mathsf{E}$

n - electron density $\mu_n - electron mobility$

- Resistivity
 - Proportionality constant between J_{drift} and E
 - Resistivity ρ , Conductivity σ
 - σ = 1/ρ

$$J_{p-drift} = qp\mu_{p}E \qquad J_{n-drift} = qn\mu_{n}E$$
$$J_{p-drift} = \sigma E = \frac{1}{\rho}E \qquad J_{n-drift} = \sigma E = \frac{1}{\rho}E$$

•
$$N_{type}$$

• $n = N_D$
• P_{type}
• $p = N_A$

 $=\frac{1}{q\mu_p N_A}$

 $\rho = \frac{1}{q\mu_n N_D}$

- Generation and Recombination
 - Generation spontaneous creation of a hole/electron pair by the freeing of an electron from a normal atom
 - Thermal energy
 - Particle collisions (including photons)
 - Recombination spontaneous combination of a hole and an electron to return an atom to its normal state
 - Statistical process chance?