# Last updated 3/8/23

• Real diode behavior



Real diode behavior



 $V_D > V_Z$  $I_D = I_S \left( e^{\frac{V_D}{nV_T}} - 1 \right)$ 

- Ideal diode models
  - Switch model

|                               | Forward<br>Bias           |
|-------------------------------|---------------------------|
| Rever <mark>se</mark><br>Bias | Threshold<br>voltage = 0V |

L Ideal  $\mathbf{\nabla}$ 

- Ideal diode models
  - Switch model with Turn-on voltage



- Ideal diode models
  - Piecewise Linear model



- Small Signal Model
  - Consider the I-V characteristics constant



Small Signal Model

small  $\Delta v \rightarrow$ large  $\Delta i$   $I_D - DC$  current  $V_D - DC$  voltage  $i_d - small signal current$  $v_d - small signal voltage$   $\frac{1}{1} \quad \stackrel{}{\longleftrightarrow} \quad \stackrel{}{\underset{d}{\longrightarrow}} \quad$ 

large  $\Delta v \rightarrow$ small  $\Delta i$ 

$$i_{d} = \left(\frac{I_{D}}{V_{T}}\right)v_{d} = \left(\frac{1}{r_{d}}\right)$$
$$r_{d} = \left(\frac{V_{T}}{I_{D}}\right)$$

 $C_j$  – Junction Capacitance  $C_d$  – Diffusion Capacitance

 $C_j$  – dominant in reverse bias  $C_d$  – dominant in forward bias

 $v_d$