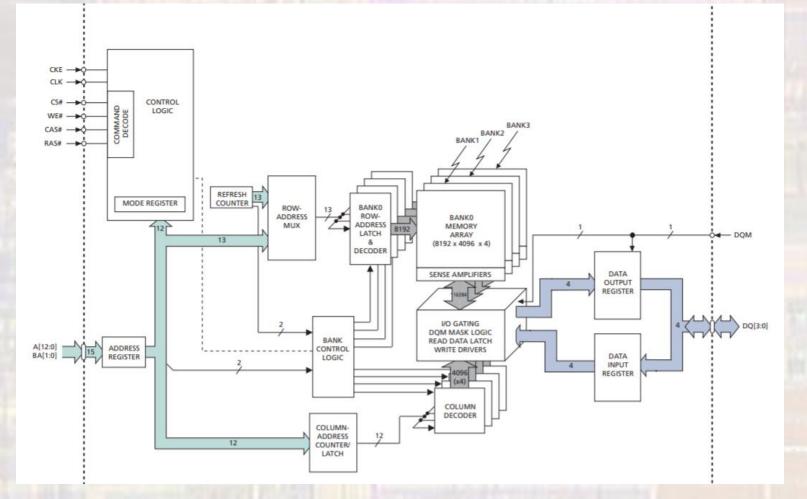
Last updated 4/28/22

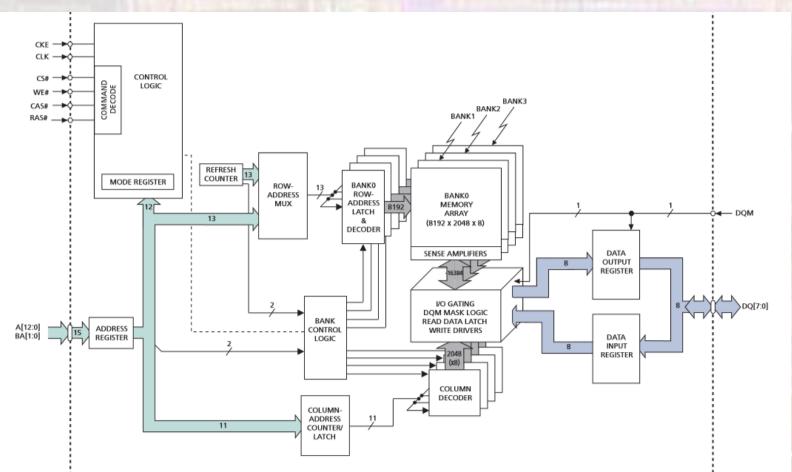
- SDRAM
 - 512Mb : 128Mx4, 64Mx8, 32Mx16

The 512Mb SDRAM is a high-speed CMOS, dynamic random-access memory containing 536,870,912 bits. It is internally configured as a quad-bank DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the x4's 134,217,728-bit banks is organized as 8192 rows by 4096 columns by 4 bits. Each of the x8's 134,217,728-bit banks is organized as 8192 rows by 2048 columns by 8 bits. Each of the x16's 134,217,728-bit banks is organized as 8192 rows by 1024 columns by 16 bits.

Read and write accesses to the SDRAM are burst-oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA[1:0] select the bank; A[12:0] select the row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

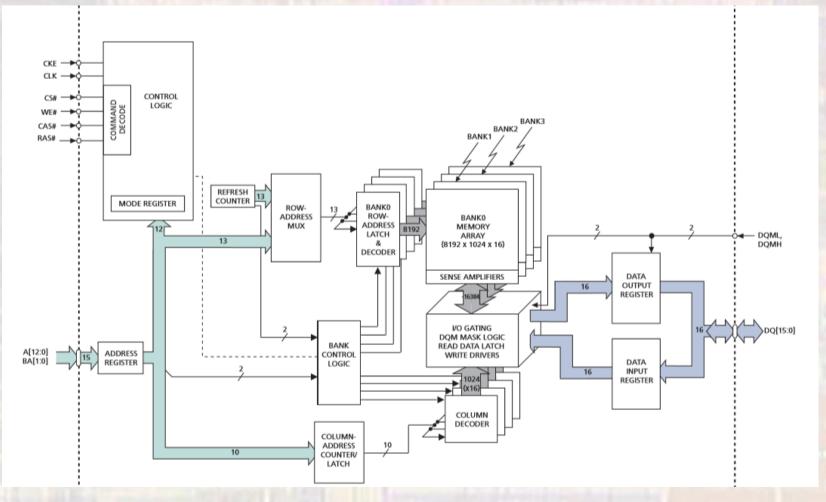

- SDRAM
 - 512Mb : 128Mx4

The SDRAM provides for programmable read or write burst lengths (BL) of 1, 2, 4, or 8 locations, or the full page, with a burst terminate option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

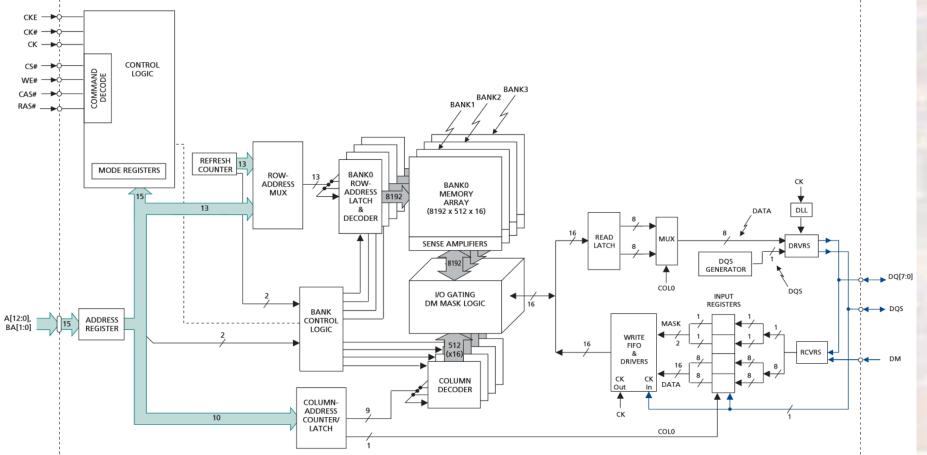

The 512Mb SDRAM uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a highspeed, fully random access. Precharging one bank while accessing one of the other three banks will hide the PRECHARGE cycles and provide seamless, high-speed, random-access operation.

SDRAMs offer substantial advances in DRAM operating performance, including the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time, and the capability to randomly change column addresses on each clock cycle during a burst access.

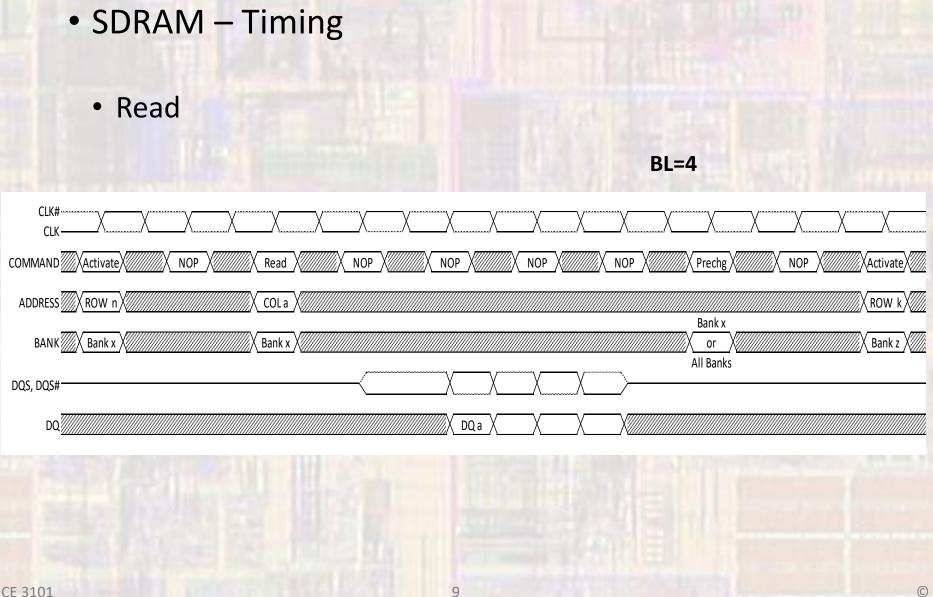
- SDRAM
 - 512Mb : 128Mx4



- SDRAM
 - 512Mb : 64Mx8


5

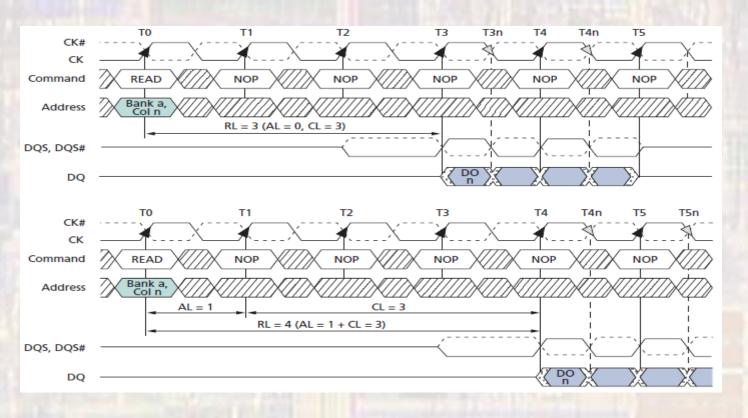
- SDRAM
 - 512Mb: 32Mx16



6

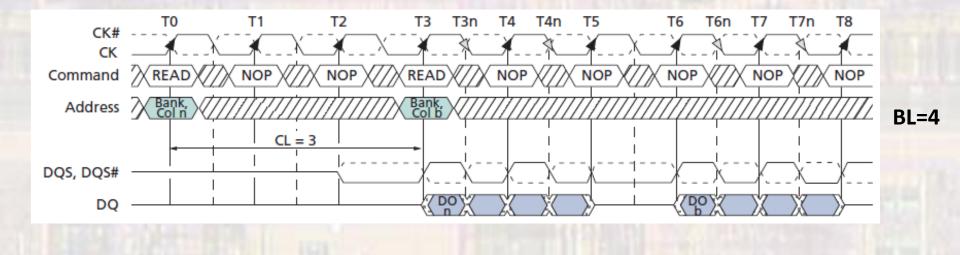
- SDRAM DDR
 - 256Mb: 32M x 8

- SDRAM Basic Commands
 - ACTIVATE select 1 row in a specific bank (RAS) (open)
 - READ/WRITE select a column (CAS)
 - PRECHARGE prepare 1 or all banks for activation (close)
 - Auto precharge automatically executes precharge after a Read or Write
 - NOP do nothing
 - Commands are decoded from the CS, RAS, CAS, and WE signals

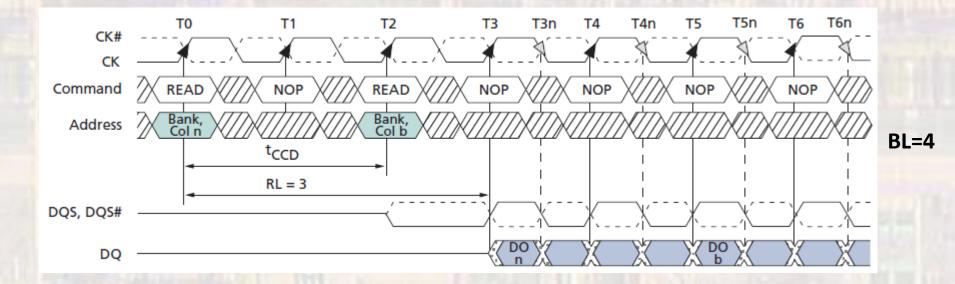


- SDRAM Timing
 - Write

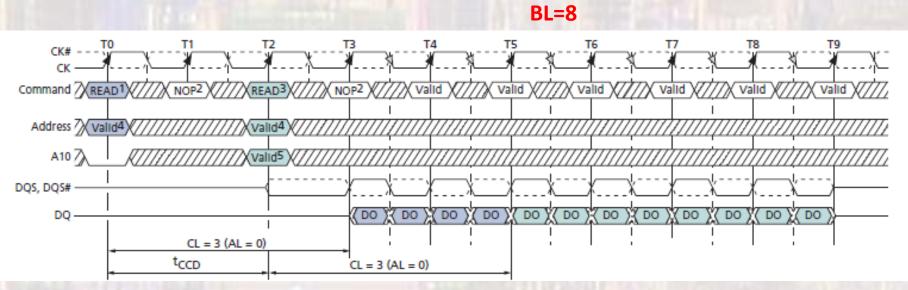
CLK#XXXXX	XXX	XX		XX	XX	XX	XX
COMMAND	Write Wite NOP	X	NOP	X	X Prechg	X	X//////XActivate
ADDRESS	X COLa X				Danky		//////////////////////////////////////
BANK Bank x	X Bank x X				Bank x	X	
DQS, DQS#		-<			All Bank	S	
DQ		DQa		XX			
	- Internet			1.0084			
CE 3101		10					© t


BL=4

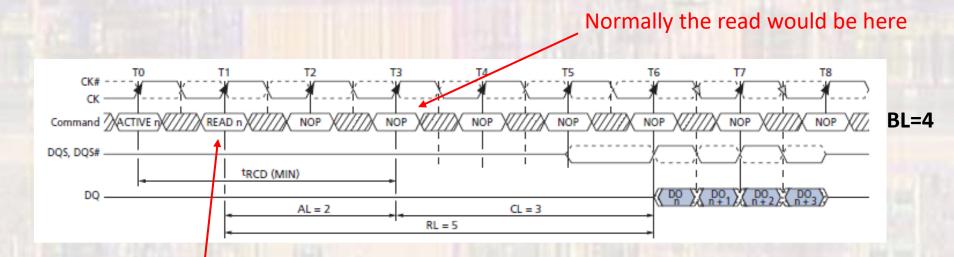
- SDRAM Timing
 - Read Latency
 - CL CAS latency clock cycles from CAS to data out
 - AL Additional Latency pipeline commands or match parts



BL=4


- SDRAM Timing
 - Non-consecutive Read bursts

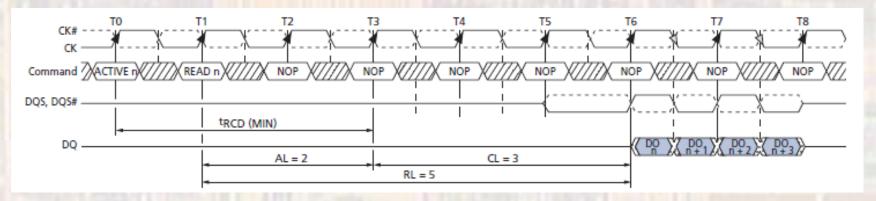
- SDRAM Timing
 - Consecutive Read bursts



- SDRAM Timing
 - Read interrupted by read

- Valid addresses include
 - Same bank, same row w/o precharge
 - Different bank assuming precharged

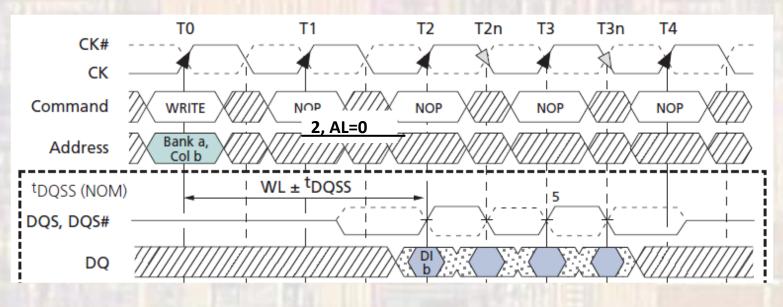
- SDRAM Timing
 - POSTED CAS
 - For CL=3, set AL=2 and move the READ command forward 2 clocks



Move the read forward to complete the cycle and do something else

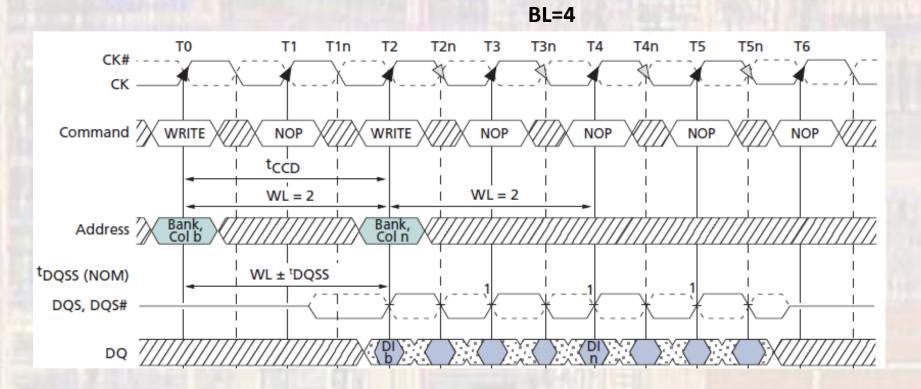
SDRAM – Timing

• DQS

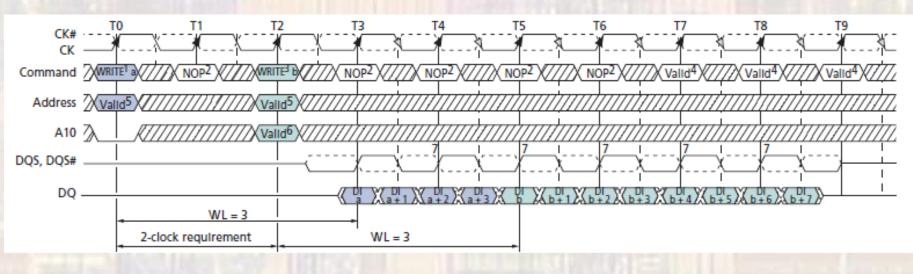

- Signal generated by the SDRAM in read mode
- Used by the Memory Management Unit (MMU) to know when to sample the read data
- MMU must sample at halfway point of DQS

BL=4

- SDRAM Timing
 - Write
 - DQS generated by the MMU in write mode
 - Edge must match up with the center of valid data


BL=4

- SDRAM Timing
 - Non-consecutive Writes



- SDRAM Timing
 - Consecutive Writes

SDRAM – Timing

• Write interrupt by Write

BL=8

SDRAM – DDR3 spec sheet

1Gb: x4, x8, x16 DDR3 SDRAM Features

DDR3 SDRAM

MT41J256M4 – 32 Meg x <mark>4</mark> x 8 banks MT41J128M8 – 16 Meg x <mark>8</mark> x 8 banks MT41J64M16 – 8 Meg x <mark>16</mark> x 8 banks

Features

- V_{DD} = V_{DDO} = 1.5V ±0.075V
- 1.5V center-terminated push/pull I/O
- Differential bidirectional data strobe
- <u><u>9</u>*n*-hit profetch architecture
 </u>

Options ¹	Marking
 Configuration 	
– 256 Meg x 4	256M4
– 128 Meg x 8	128M8
- 64 Meg x 16	64M16

- 1Gb:x4 = 256Mx4 = 32Mx4x8 same part
- 1Gb = 256Mx4 = 128Mx8 = 64Mx16 different parts same die

SDRAM – DDR3 spec sheet

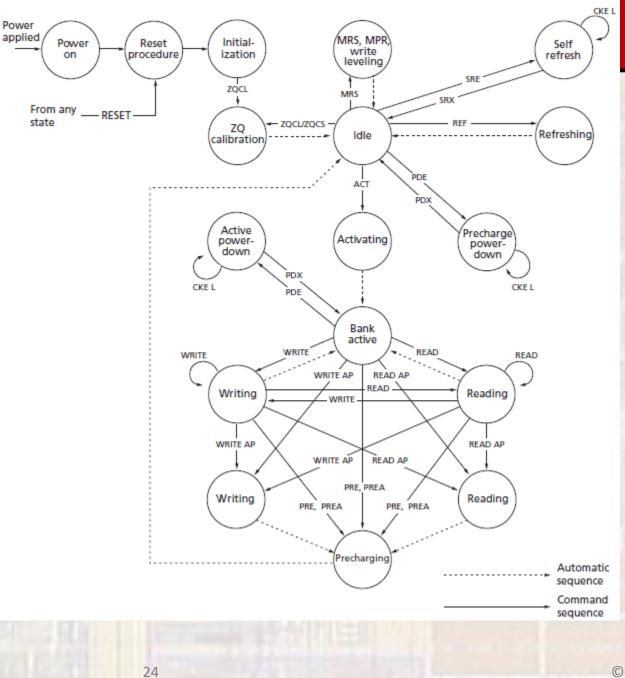
Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	^t RP (ns)	CL (ns)
-107 ^{1, 2}	<mark>1866</mark>	13-13 <mark>-13</mark>	13.91	13.91	<mark>13.91</mark>
-107E ^{1, 2}	1866	12-12-12	12.84	12.84	12.84
-125 ^{1, 2}	1600	11-11-11	13.75	13.75	13.75
-15E ¹	1333	9-9-9	13.5	13.5	13.5
187E	1066	7-7-7	13.1	13.1	13.1

- 1866MT/s --> 933MHz clock operation
- --> 1.071ns/clock
- --> CL=13 means tCL = 13.93ns delay

SDRAM – DDR3 spec sheet

Parameter	256 Meg x 4	128 Meg x 8	64 Meg x 16
Configuration	32 Meg x 4 x 8 banks	16 Meg x 8 x 8 banks	8 Meg x 16 x 8 banks
Refresh count	8K	8K	8K
Row addressing	16K (A[13:0])	16K (A[13:0])	8K (A[12:0])
Bank addressing	8 (BA[2:0])	8 (BA[2:0])	8 (BA[2:0])
Column addressing	2K (A[11, 9:0])	1K (A[9:0])	1K (A[9:0])
Page Size	1KB	1KB	2KB

- It appears this memory has
 - 8 arrays


Table 2: Addressing

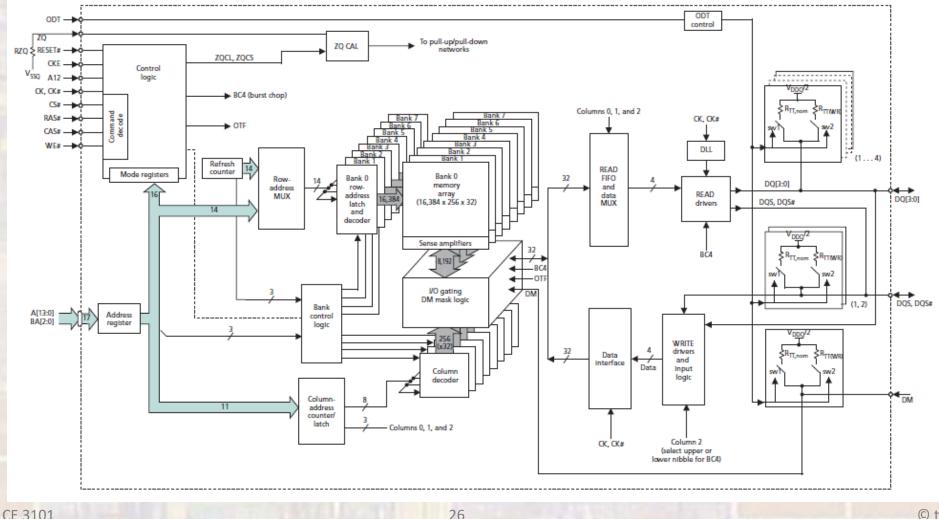
- 8K rows X 16K bitlines 8 X 8K X 16Kb = 1Gb
- x4 and x8 break rows in half
- x4 halves the column

SDRAM - O

• SDRAM -DDR3 spec sheet Figure 2: Simplified State Diagram

Power

SDRAM – DDR3 spec sheet


Table 70: Truth Table - Command

Notes 1-5 apply to the entire table

			C	KE										
Function		Symbol	Prev. Cycle	Next Cycle	CS#	RAS#	CAS#	WE#	BA [2:0]	An	A12	A10	A[11, 9:0]	Notes
Bank ACTIVAT	ſE	ACT	Н	Н	L	L	Н	Н	BA	R	ow ad	dress (I	RA)	
WRITE	BL8MRS,	WR	Н	Н	L	Н	L	L	BA	RFU	V	L	CA	8
READ	BL8MRS,	RD	Н	Н	L	Н	L	Н	BA	RFU	V	L	CA	8
Single-bank PF	RECHARGE	PRE	Н	Н	L	L	Н	L	BA	V	V	L	V	
PRECHARGE a	l banks	PREA	Н	Н	L	L	Н	L	V		V	Н	V	

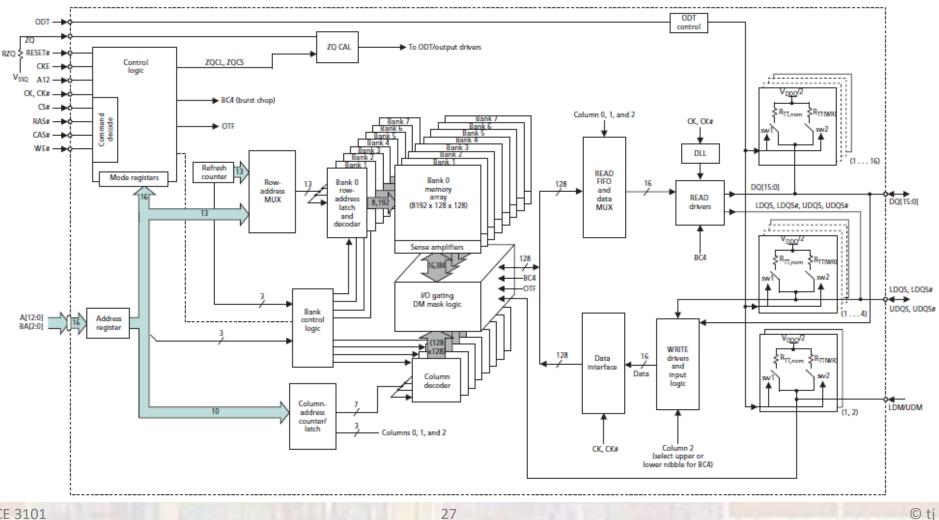
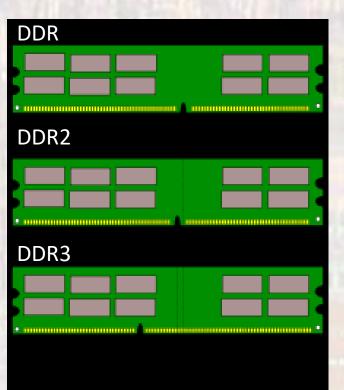

SDRAM – DDR3 spec sheet

Figure 3: 256 Meg x 4 Functional Block Diagram

SDRAM – DDR3 spec sheet

Figure 5: 64 Meg x 16 Functional Block Diagram


27

• Dimm

- Dual Inline Memory Module
- Multiple memory chips integrated onto a board
- Support 64bit transfers
- Parallel configuration
 - Different chip selects
- Word configuration
 - Each chip supplies part of a bigger word
 - 8, x1 devices \rightarrow 8 bit word
 - 8, x4 devices \rightarrow 32 bit word
- use PCx-zzzz where zzzz is max bandwidth (transfer rate in bytes)
 - DDR2-800 → pc2-6400 (transfers x # bits /8) = 800M x 64b /8 = 6.4GB/s

- Dimm
 - pc, pc2, pc3 different slot configurations

SDRAM	- Operatior	Memory	Real Clock	Maximum Theoretical Transfer	Memory Module
• DDR - Tec	chnology	DDR200	100 MHz	Rate 1,600 MB/s	PC-1600
		DDR266	133 MHz	2,133 MB/s	PC-2100
		DDR333	166 MHz	2,666 MB/s	PC-2700
		DDR400	200 MHz	3,200 MB/s	PC-3200
Technology	Typical Voltage	DDR2-400	200 MHz	3,200 MB/s	PC2-3200
recimology	Typical voltage	DDR2-533	266 MHz	4,266 MB/s	PC2-4200
DDR	2.5 V	DDR2-667	333 MHz	5,333 MB/s	PC2-5300
DDR2	1.8 V	DDR2-800	400 MHz	6,400 MB/s	PC2-6400
DDR3	1.5 V	DDR2-1066	533 MHz	8,533 MB/s	PC2-8500
	1 2 1 /	DDR3-800	400 MHz	6,400 MB/s	PC3-6400
DDR4	1.2 V	DDR3-1066	533 MHz	8,500 MB/s	PC3-8500
DDR5	1.1 V	DDR3-1333	666 MHz	10,666 MB/s	PC3-10600
		DDR3-1600	800 MHz	12,800 MB/s	PC3-12800

• DDR – Technology

• DDR4

Standard name	Memory clock (MHz)	l/O bus clock (MHz)	Data rate (<u>MT/s</u>)	Module name	Peak trans- fer rate (MB/s)	Timings CL-tRCD-tRP	CAS latency (ns)
DDR4-1600J* DDR4-1600K DDR4-1600L	200	800	1600	PC4-12800	12800	10-10-10 11-11-11 12-12-12	12.5 13.75 15
DDR4-1866L* DDR4-1866M DDR4-1866N	233.33	933.33	1866.67	PC4-14900	14933.33	12-12-12 13-13-13 14-14-14	12.857 13.929 15
DDR4-2133N* DDR4-2133P DDR4-2133R	266.67	1066.67	2133.33	PC4-17000	17066.67	14-14-14 15-15-15 16-16-16	13.125 14.063 15
DDR4-2400P* DDR4-2400R DDR4-2400T DDR4-2400U	300	1200	2400	PC4-19200	19200	15-15-15 16-16-16 17-17-17 18-18-18	12.5 13.32 14.16 15
DDR4-2666T DDR4-2666U DDR4-2666V DDR4-2666W	333.33	1333.33	2666.67	PC4-21333	21333.33	17-17-17 18-18-18 19-19-19 20-20-20	12.75 13.50 14.25 15
DDR4-2933V DDR4-2933W DDR4-2933Y DDR4-2933AA	366.67	1466.67	2933.33	PC4-23466	23466.67	19-19-19 20-20-20 21-21-21 22-22-22	12.96 13.64 14.32 15
DDR4-3200W DDR4-3200AA DDR4-3200AC	400	1600	3200	PC4-25600	25600	20-20-20 22-22-22 24-24-24	12.5 13.75 15

- DDR Technology
 - DDR5

Feature	DDR5 DRAMs	DDR4 DRAMs		
Device size	8Gb to 64Gb	2Gb to 16Gb		
Speed	Up to 6400 Mbps	Up to 3200 Mbps		
Voltage	1.1V DRAM I/O	1.2V DRAM I/O		
Burst length per transaction	16 beats	8 beats		
DIMM topology	 Dual-channel, with each channel being 32-bits wide for data ECC DIMMs are generally 80-bits wide, with 40 bits per channel 	 Single-channel with a data-width of 64 bits ECC DIMMs are 72-bits wide 		