Metal Oxide Semiconductor Capacitor

Last updated 3/24/22

- Operation
 - Positive Bias (P-Si)
 - Depletion region is formed
 - Mobile holes pushed away (region is depleted of holes)
 - Net negative (fixed) charge left behind

- Operation
 - Large Positive Bias (P-Si)
 - Depletion region is formed
 - Mobile holes pushed away (region is depleted of holes)
 - Net negative (fixed) charge left behind
 - Electrons are drawn from the Si to form an inversion layer

- Operation
 - Negative Bias (N-Si)
 - Depletion region is formed
 - Mobile electrons pushed away (region is depleted of electrons)
 - Net positive (fixed) charge left behind

- Operation
 - Large Negative Bias (N-Si)
 - Depletion region is formed
 - Mobile electrons pushed away (region is depleted of electrons)
 - Net positive (fixed) charge left behind
 - Holes are drawn from the Si to form an inversion layer

- Parameters
 - A cross section area of the capacitor
 - 1x10⁻¹⁵ m²
 - t_{ox} thickness of the oxide
 - 15-20 Angstroms 3 to 4 atom layers
 - 1.5 2.0x10⁻⁹ m
 - ε₀ permittivity (dielectric constant) of free space
 - 8.85x10⁻¹²F/m
 - $\epsilon_r(SiO_2) relative permittivity multiplier for SiO_2$
 - 3.9

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{\varepsilon_0 \varepsilon_r}{t_{ox}}$$