Metal Oxide Semiconductor Depletion Mode Transistor

Last updated 3/24/22

Structure

Built-in channel

- Structure
 - Built-in channel

© ti

- N-MOS Operation
 - O Bias + Positive Bias from Drain to Source
 - Channel exists
 - Electrons move from Source to Drain
 - Current flows from Drain to Source

A channel exists from Source to Drain Electrons can flow through this channel

- N-MOS Operation
 - Large Negative Bias
 - Mobile electrons pushed away (region is depleted of carriers)
 - Channel disappears
 - No current flow

- P-MOS Operation
 - O Bias + Positive Bias from Source to Drain
 - Channel exists
 - Holes move from Source to Drain
 - Current flows from Source to Drain

A channel exists from Source to Drain Holes can flow through this channel

- P-MOS Operation
 - Large Positive Bias
 - Mobile holes pushed away (region is depleted of carriers)
 - Channel disappears
 - No current flow

- Depletion Mode
 - No bias is required to form the channel
 - 4-terminal symbol

- In digital applications the Source is typically tied to
 - Vdd for P-MOS
 - Gnd for N-MOS

The simplified logic symbols

Parameters

- W width of the transistor
- L length of the transistor (S to D)
- V_{th} threshold voltage (inversion layer removed)
- Kn, Kp conduction parameter

$$K_n = \frac{W\mu_n C_{ox}}{2L} \qquad K_p = \frac{W\mu_p C_{ox}}{2L}$$

$$K_n = \frac{k'_n}{2} \frac{W}{L}$$

$$K_p = \frac{k'_p}{2} \frac{W}{L}$$

$$k'_n = \mu_n C_{ox}$$

$$k'_p = \mu_p C_{ox}$$

 μ_n , μ_n , C_{ox} fixed for a given semiconductor process