Last updated 4/14/22

- Operational Amplifier (OpAmp)
 - High Gain difference amplifier

$$V_o = A_{od} \left(V_+ - V_- \right)$$

Implied power connections

Explicit power connections

- Ideal OpAmp
 - High Gain difference amplifier

$$V_o = A_{od}(V_+ - V_-)$$
 $A_{od} = 100,000$

3

- OpAmp Limitations
 - Output Swing
 - Common opamps can only swing the output to about 1V from the positive or negative voltage rails
 - Rail-to-rail opamps can get to within 10s of mv of the rails

$$A_{od} = 100,000$$

- OpAmp Limitations
 - Slew Rate
 - Limit on how fast the output can change
 - Limits large signal rise and fall times at the output
 - Typically between 1V/us and 100V/us

$$\left(\frac{dV_o}{dt}\right)_{max} = SR$$

5

- OpAmp Limitations
 - Input Offset
 - This represents a built-in error between the + and inputs
 - Bipolar: < 20mV
 - CMOS: < 1mV

$$V_o = A_{od}(V_+ - V_- - V_{offset})$$
 $A_{od} = 100,000$
 $V_{os} = 100V$

6

- OpAmp Limitations
 - Input bias current / input bias current offset
 - The required input current to operate the opamp
 - The offset from + to for the input bias currents
 - Bipolar inputs
 - Bias current, typically < 1uA
 - Offset, typically 20% 50% of bias current
 - CMOS inputs, typically < 1nA

- OpAmp Limitations
 - Input Impedance
 - The impedance looking into the inputs
 - Bipolar input opamps typically between $1M\Omega$ and $10M\Omega$
 - CMOS input opamps typically > 10GΩ
 - Output Impedance
 - The impedance looking into the output
 - Typically < 50Ω

- OpAmp Limitations
 - Common Mode Rejection Ratio (CMMR)
 - This represents the opamps ability to reject signals that are present on both inputs (common)
 - CMRR is the ratio of the common-mode gain to differential-mode gain

$$V_{o} = A_{od}(V_{+} - V_{-}) + A_{CM} \frac{(V_{+} + V_{-})}{2} \qquad A_{od} = 100,000$$
$$CMRR = \frac{A_{od}}{A_{CM}} \qquad CMRR_{dB} = 20 \log \frac{A_{od}}{A_{CM}} \qquad A_{CM} = 80 \text{dB}$$
(10,000)

 $1V + \frac{100,000}{10,000} \frac{(1.01mV + 1mV)}{2}$ 1V + 10.05mV = 1.01V

© tj

- OpAmp Limitations
 - Gain Bandwidth Product
 - Product of the Gain at a specific frequency and the frequency
 - For most negative feedback configurations this is constant
 - Sometimes called the Unity Gain Bandwidth

Usable Gain

