RC Active Filters 2nd Order +

Last updated 4/29/22

Generalized Second Order Configuration

Generalized Second Order Configuration

Can be generalized to the form

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

 ω – characteristic frequency Q – quality factor

$a_o \neq 0$	low pass
$a_1 \neq 0$	band pass
$a_2 \neq 0$	high pass

© ti

Generalized Second Order Configuration

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

- Variations in a, ω, and Q generate different passband characteristics
- a, ω, and Q are set by the values of Z₁, Z₂, Z₃, Z₄

- Butterworth Maximally Flat
 - Low Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

For the Butterworth response $R_1 = R_2$ $C_3 = 2C_4$ $\omega_{3dB} = \frac{1}{\sqrt{2RC_4}}$

© tj

CE 3101

- Butterworth Maximally Flat
 - High Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

For the Butterworth response $R_4 = 2R_3$ $C_1 = C_2$ $\omega_{3dB} = \frac{1}{\sqrt{2R_3C}}$

- Chebyshev Enhanced initial rolloff
 - Low Pass

$$H_{s} = \frac{a_{2}s^{2} + a_{1}s + a_{0}}{s^{2} + s\frac{\omega_{0}}{Q} + \omega_{0}^{2}}$$

- Second order filters
 - Non-inverting
 - Selectable gain
 - High frequencies → unity gain

© tj

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters
 - Q quality factor = gain at the 3db point
 - ζ zeta damping factor = 1/(2Q)
 - ω_0 characteristic frequency where things change in the frequency response

2nd order LPF

$$A_{\nu} = A \times \left| \frac{\omega_0^2}{-\omega^2 + j \left(\frac{\omega_0}{Q}\right) \omega + \omega_0^2} \right| = A \times \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + \left(\frac{\omega_0}{Q} \times \omega\right)^2}}$$
$$Q = \frac{1}{A - 3}$$
$$\omega_C = \omega_0 \sqrt{1 - \frac{1}{2Q^2} + \sqrt{1 + \left(1 - \frac{1}{2Q^2}\right)^2}}$$
$$A = 3 - \frac{1}{Q}$$

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters

2nd order LPF

$$A_{v} = A \times \frac{\omega_{0}^{2}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + \left(\frac{\omega_{0}}{Q} \times \omega\right)^{2}}}$$

$$\omega_{C} = \omega_{0} \left| 1 - \frac{1}{2Q^{2}} + \sqrt{1 + \left(1 - \frac{1}{2Q^{2}}\right)^{2}} \right|$$

$$\omega = 0, \qquad A_{\nu} = A$$
$$\omega = \omega_0, \qquad A_{\nu} = A \times Q$$
$$\omega \gg \omega_0, \qquad A_{\nu} = A \times \frac{\omega_0^2}{\omega^2} = 0$$

$$Q = \frac{1}{\sqrt{2}}, \qquad \omega_C = \omega_0, \qquad A = 1.58$$

© tj

- Second order filters
 - 2nd order filters with gain exhibit a more complex response than 2nd order passive filters
 - Over damped:

Filter response is smooth and slow Transient response is smooth and slow

A < 1.586 $Q < \frac{1}{\sqrt{2}}$ $\zeta > 0.707$

 $A \to 3$ $Q = \infty$ $\zeta \to 0$

- Critically damped: Filter response matches the passive filter A = 1.586 $Q = \frac{1}{\sqrt{2}}$ $\zeta = 0.707$
- Under damped:

Filter response is peaked Transient response "rings"

- A > 1.586 $Q > \frac{1}{\sqrt{2}}$ $\zeta < 0.707$
- Unstable:

Filter circuit oscillates independently

- Order > 2 active Filters
 - Cascade 1st and 2nd order stages
 - Remember, gain can be tricky in 2nd order stages
 - Move gain to 1st order stages where possible
 - Computer programs and calculators available

- Chebyshev 5th order HP
 - High Pass

