Last updated 1/6/25

- Boolean logic, Boolean Algebra
 - A topic of mathematics that studies logic
 - Formalized by (credited to) George Boole (1847)
 - Includes:
 - Abstraction of T/F to 1/0
 - Set of basic operations
 - Set of terms
 - Rules to manipulate equations

- Abstraction and basic operands
 - Abstraction
 - $T \rightarrow 1$
 - $F \rightarrow 0$
 - Logic Expression
 - Operation Operand \rightarrow 1 or 0
 - Operand Operation Operand → 1 or 0
 - Operations
 - NOT flips the evaluation of the operand
 - $1 \rightarrow 0 \text{ or } 0 \rightarrow 1$
 - OR evaluates as 1 if either operand is 1
 - AND evaluates as 1 if both operands are 1

- NOT flips the evaluation of the operand
 - $1 \rightarrow 0 \text{ or } 0 \rightarrow 1$
 - not operand
 - ~ operand
 - operand

A = 1 B = 0not A $\rightarrow 0$ $\sim B \rightarrow 1$ not (not A) $\rightarrow 1$ $\overrightarrow{A} \rightarrow 1$
 NOT

 A
 A

 0
 1

 1
 0

- OR evaluates as 1(T) if either input is 1 (T)
 - op1 or op2
 - op1 | op1
 - op1 + op2

A = 1		
B = 0		
<mark>C</mark> = 1		
A or B	\rightarrow	1
A C	\rightarrow	1
B + C	\rightarrow	1
(not A)	$ B \rightarrow$	0

OR				
А	В	A + B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

AND – evaluates as 1(T) if both inputs are 1(T)

6

- op1 and op2
- op1 & op2
- op1op2, (op1)(op2)

A = 1 B = 0 C = 1		
A and B A & C BC	\rightarrow \rightarrow \rightarrow	0 1 0
A & (not	B)	\rightarrow

AND				
А	В	AB		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

- Boolean Logic Precedence
 - NOT >> AND >> OR

 $AB + \overline{C} \rightarrow ((AB) + (\overline{C}))$

- Terms
 - Complement
 - The NOT of a variable
 - The complement of A is A
 - The complement of A is A
 - Literal
 - Any single variable or it's complement
 - A, B, C, D
 - Product (implicant)
 - The AND of 2 or more literals
 - AB, ABC
 - Sum
 - The OR of 2 or more literals
 - A+B, A+B+C

- Terms cont'd
 - Minterm
 - The logical combination of all input variables to make a row in the truth table true (1)
 - Labeled m_x, where x is the row in the truth table
 - Starting with row 0 at the top

А	В	Y	minterm	minterm name
0	0		ĀB	m _o
0	1		A B	m ₁
1	0	-	AB	m ₂
1	1	-	A B	m ₃

9

- Terms cont'd
 - Sum of Products
 - The sum of all minterms that result in a 1 for the output
 - $Z = \overline{A}B + A\overline{B}$

•
$$Z = \sum (m_1, m_3) = \sum (1,3)$$

					minterm
1	Α	В	Z	minterm	name
	0	0	0	AB	m _o
	0	1	1	A B	m ₁
	1	0	0	AB	m ₂
	1	1	1	A B	m ₃

- Terms cont'd
 - Maxterm
 - The logical combination of all input variables to make a row in the truth table false (0)
 - Labeled M_x, where x is the row in the truth table
 - Starting with row 0 at the top

А	в	x	maxterm	maxterm name
0	0		A+B	M ₀
0	1		A+B	M ₁
1	0	-	A+B	M ₂
1	1		A+B	M ₃

- Terms cont'd
 - Product of Sums Form (POS)
 - The product of all maxterms that result in a 0 for the output
 - $X = (A + \overline{B}) (\overline{A} + B)$

• $X = \prod(M_1, M_2) = \prod(1, 2)$

	А	В	x	maxterm	maxterm name
	0	0	1	A+B	M ₀
-	0	1	0	A+B	M ₁
-	1	0	0	A+B	M ₂
	1	1	1	A+B	M ₃