Last updated 1/8/25

- Periodic signal used to control the operation of Sequential (Synchronous) digital systems
- Created by special components called Crystals or
- Created by a special circuit called a Phased Locked Loop (PLL) or Delay Locked Loop (DLL)

- Characterized by 3 values
 - Period
 - Frequency
 - Duty Cycle

- Clocks are Periodic Signals
 - Fixed repetition cycle
 - Period
 - Symbol: T
 - Units: seconds (s)
 - Shortest time between any 2 periodic signal values

- Clocks are Periodic Signals
 - Fixed repetition cycle
 - Frequency
 - Symbol: F
 - Units: Hertz (Hz)
 - 1 Hz = 1 / sec
 - Defined as: Frequency = 1 / Period

T (period)

time

F (frequency) = 1/T (period)

50MHz ←→ 20ns

- Clocks are Periodic Signals
 - Fixed time the signal is high in each period
 - Duty Cycle
 - Symbol: none
 - Units: %
 - Defined as: (Time_{High} / Period) * 100%

- Engineering Notation
 - Special version of Scientific Notation
 - Scientific Notation
 - 234.567 → 2.3456x10² 2.3456 E2
 - 0.009876 → 9.86x10⁻³ 9.86 E-3
 - Engineering Notation
 - Exponents are factors of 3

Symbol	т	G	М	к		m	u	n	р	f
10 ^{Exponent}	12	9	6	3	0	-3	-6	-9	-12	-15
Name	Tera	Giga	Mega	Kilo		milli	micro	nano	pico	femto

note the use of lower case and uppercase in Symbols and Names

- Engineering Notation
 - Rule: Always maintain at least 1 value to the left of the decimal point
 - 2365.54 → 2.36554x10³ 2.36554 K
 - .000000234 → 23.4x10⁻⁹
 23.4 p
 - $1.234 \times 10^7 \rightarrow 12.34 \times 10^6$ 12.34 M
 - 23.654 → 23.654 23.654
 - $1.234 \times 10^7 \rightarrow .01234 \times 10^9 \rightarrow 12.34 \times 10^6$

12.34 M

- Clock Systems quick calculations
 - No calculator

Period = 1 / FrequencyFrequency \rightarrow Period1MHz = 1 * 10^6 \rightarrow 1/1 x 1/1M \rightarrow 1x10⁻⁶ \rightarrow 1us20KHz = 20 * 10^3 \rightarrow 1/20 x 1/1K \rightarrow 0.05x10⁻³

Frequency = 1 / Period

Period \rightarrow Frequency $10us = 10 * 10^{-6}$ $\rightarrow 1/10 \times 1/10^{-6} \rightarrow 0.1 \times 1M \rightarrow 0.1MHz \rightarrow 100KHz$ $50ns = 50 * 10^{-9}$ $\rightarrow 1/50 \times 1/10^{-9} \rightarrow 0.02 \times 1G \rightarrow 0.02GHz \rightarrow 20MHz$

- Clock Systems
 - 3 phase, non-overlapping clock

