# Last updated 1/6/25

- Device area is the key driver for logic area calculations
  - Minimum device lengths and widths set minimum device area
  - In most technologies, P-MOS devices have approximately 1/3 the strength of N-MOS device
    - To keep gates balanced, P-MOS devices need to be 3x as large as N-MOS devices
  - Devices in series must be made larger due to the need to make the series path through multiple devices the same strength as a single device

- CMOS Gates INV
  - Total area: 4X nm<sup>2</sup>



3

- CMOS Gates NOR\_2
  - Total area: 14X nm<sup>2</sup>



- CMOS Gates NOR\_3
  - Total area: 30X nm<sup>2</sup>



5

- CMOS Gates NAND\_2
  - Total area: 5X nm<sup>2</sup>



6

- CMOS Gates NAND\_3
  - Total area: 6X nm<sup>2</sup>





- CMOS Transmission Gates
  - Total area: 4X nm<sup>2</sup>
  - Often we just make them the same size  $\rightarrow$  2X nm<sup>2</sup>



- Summary
  - NAND gates preferred over NOR gates

| Gate   | Area (X nm <sup>2</sup> ) |
|--------|---------------------------|
| INV    | 4                         |
| NOR_2  | 14                        |
| NOR_3  | 30                        |
| NAND_2 | 5                         |
| NAND_3 | 6                         |
| NAND_4 | 9.33                      |
| T-Gate | 4                         |