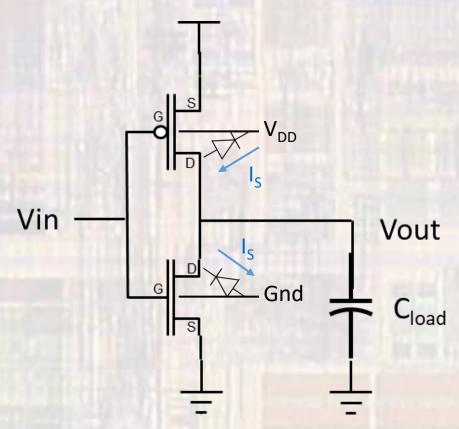
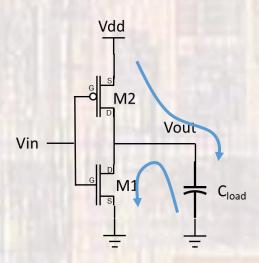

Last updated 10/29/24


- 3 Major power components
 - DC power
 - Switching power
 - Shoot-Through power

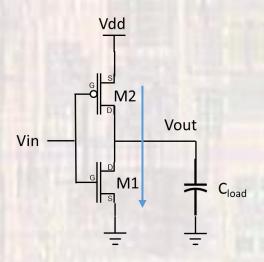
- DC power
 - Junction leakage (Drain to Body)
 - Reverse diode leakage
 - Vout = 0 P-channel leaks
 - Vout = V_{DD} N-channel leaks
 - Small for each device
 - Typically, 1x10⁻¹² A / device
 - Can add up with 100M devices

Power
$$\cong I_S \times V_{DD}$$


Power is proportional to V_{DD}

- Switching Power
 - Charging / Dis-charging the load and parasitic Cs
 - Load is the gate(s) driven by the output
 - Worst case
 - Rise and fall with every change (Frequency F)

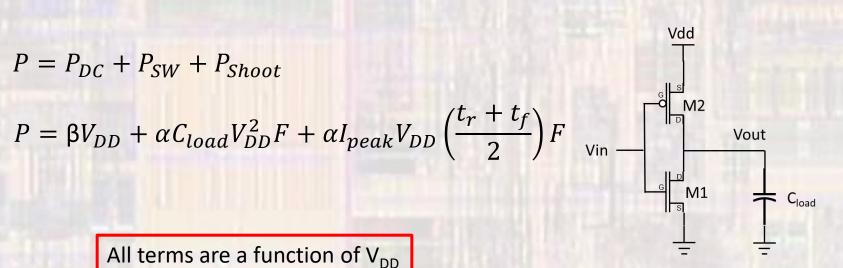
$$P = C_{load} V_{DD}^2 F$$


Power is proportional to V_{DD}^2

- Shoot-Through
 - Short period of time when both devices are on
 - Current from V_{DD} to Gnd
 - Can be large but for very short periods of time

$$P = I_{peak} V_{dd} \left(\frac{t_r + t_f}{2} \right) F$$

Power is proportional to V_{DD}


- Total power
 - α proportion of clock intervals switching
 - β leakage factor (number of gates * leakage current)

$$P = P_{DC} + P_{SW} + P_{Shoot}$$

$$P = \beta V_{DD} + \alpha C_{load} V_{DD}^2 F + \alpha I_{peak} V_{DD} \left(\frac{t_r + t_f}{2}\right) F$$

All terms are a function of V_{DD}

Operate at the lowest possible V_{DD}

