Last updated 1/6/25

- Integrated Circuit (IC) technology
 - Built on wafers
 - 4" \rightarrow 12" diameter
 - Multi \$B factories
 - Mostly run with automation few people
 - See videos on website
 - Cut into individual die

100s to 1000s of die per wafer

Packaged into IC 'chips'

die bonded in package

dual inline package

quad flat package

- Semiconductor Component History
 - 1960s
 - Junction Diodes
 - Bipolar Transistors
 - NPN, PNP
 - 1970s
 - N-MOS Transistors
 - P-MOS Transistors
 - C-MOS Transistors
 - 1990s
 - FinFET Transistors
 - 2000s
 - All Around Gate Transistors
 - Continuous shrinking of technology

© tj

- Modern Day
 - All modern digital ICs (integrated Circuits) are built on **CMOS** technology
 - Only exception is very small circuits designed to be backward compatible to earlier Bipolar technologies

Basic Logic Gate (NAND-2)

6 transistors 2 diodes 5 resistors

- CMOS
 - Complimentary Metal Oxide Semiconductor
 - Integrated Circuit technology
 - Dominates digital circuit design
 - Small
 - No DC power
 - Many variations
 - Referenced by generation: 1um, 100nm, 10nm, 7nm, 5nm, ...
 - Shrinking sizes lead to more 'stuff' in a fixed area
 - 2 primary devices (complimentary)
 - N-Channel (NMOS, N-type)
 - P-Channel (PMOS, P-Type)

© tj

- N-Channel (NMOS, N-type)
 - Primary current carrier electrons
 - 4(3) terminals
 - Gate control
 - Drain/Source current flow
 - Body fixed connection for digital designs

- N-Channel (NMOS, N-type)
 - Full transistor characteristics very complicated
 - 2 Levels of abstraction
 - Ideal Switch

- N-Channel (NMOS, N-type)
 - Full transistor characteristics very complicated
 - 2 Levels of abstraction
 - Complex Switch

 $G = "high" \rightarrow R small \\G = "low" \rightarrow R large$

R ↓ as transistor size \uparrow C \uparrow as transistor size \uparrow

- P-Channel (PMOS, P-type)
 - Primary current carrier holes (positive charge)
 - 4(3) terminals
 - Gate control
 - Drain/Source current flow
 - Body fixed connection for digital designs

- P-Channel (PMOS, P-type)
 - Full transistor characteristics very complicated
 - 2 Levels of abstraction
 - Ideal Switch

- P-Channel (PMOS, P-type)
 - Full transistor characteristics very complicated
 - 2 Levels of abstraction
 - Complex Switch

 $G = "low" \rightarrow R small$ $G = "high" \rightarrow R large$

R ↓ as transistor size \uparrow C \uparrow as transistor size \uparrow

- Complimentary
 - For the same Gate value
 - One is on and the other is off

- A little more detail
 - NMOS devices do not turn on (close/short) until the gate voltage reaches a small positive voltage
 - Threshold voltage Vt_N
 - 0.7v for 3.3V systems
 - 0.45v for 1.2V systems
 - PMOS devices do not turn on (close/short) until the gate voltage reaches a small voltage below V_{DD}
 - Threshold voltage Vt_P
 - 2.7v for 3.3V systems
 - 0.75v for 1.2V systems

© tj

- Digital Iconography
 - In digital circuits, a O (bubble) indicates opposite (inverted) operation
 - The NMOS is ON when the gate is high \rightarrow active high
 - The PMOS is ON when the gate is low \rightarrow active low \rightarrow O

- CMOS Transistor Parameters
 - Gate terminal
 - Looks like a capacitor to ground
 - S/D terminals
 - Look like a variable value resistor between S/D
 - Size
 - Large transistors
 - Larger gate capacitance
 - Smaller resistance values
 - Small transistors
 - Smaller gate capacitance
 - Larger resistance values
 - P vs. N
 - Same gate capacitance for the same size
 - P is weaker than N for a given size
 - R_{ON-P} 2x to 3x R_{ON-N}