Last updated 10/31/24

- Equality Comparator
 - All bits match between 2 inputs

- Magnitude Comparator
 - Unsigned numbers
 - 1 bit comparison

Α	В	A < B	A = B	A > B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

 $A < B = \overline{A}B$ $A = B = A \odot B$ $A > B = A\overline{B}$

- Magnitude Comparator
 - Unsigned numbers
 - 2 bit comparison

A < B = (A1 < B1) or (A1 = B1 and A0 < B0) A = B = (A1 = B1) and (A0 = B0) A > B = (A1 > B1) or (A1 = B1 and A0 > B0)

Expanding and putting into SOP form

 $A < B = \overline{A1B1} + \overline{A0B1B0} + \overline{A1A0B0}$ $A = B = (A1 \odot B1)(A0 \odot B0)$ $A > B = A1\overline{B1} + A0\overline{B1B0} + A1A0\overline{B0}$

© ti

- Magnitude Comparator
 - Unsigned numbers
 - 4 bit comparison with chain input
 - n-bit comparison
 - Chain 4 bit comparators

src: Electronic Design

- Magnitude Comparator
 - Signed numbers
 - Subtract and check the sign bit (n bit)
 - Z = A B
 - $Z[n-1] = 0 \rightarrow A \ge B$
 - $Z[n-1] = 1 \rightarrow A < B$
 - Fails if there is overflow
 - Overflow: $(A[n-1] \neq B[n-1]) AND (Z(n-1) \neq A[n-1])$
 - If there is overflow flip the result of the comparison