Last updated 10/10/24

These slides introduce digital logic concepts

- Digital Logic
 - Defining an expression(operand) as True or False
 - Logical
 - In the digital world we indicate T with a logical value 1
 - In the digital world we indicate F with the logical value 0
 - Physical
 - These are signals voltages on a wire
 - 1 is defined as the positive voltage supply value (V_{DD})
 - 5V, 3.3V. 2.5V, ...
 - 0 is defined as Gnd (0V)

- Digital Logic
 - Logic Expression
 - Operation Operand \rightarrow 1(T) or 0(F)
 - Operand Operation Operand \rightarrow 1(T) or 0(F)
 - More complex expressions are built out of these two basic operations

((Operand Operation Operand) Operation (Operand Operation Operand))

(((Operand Operation Operand) Operation Operand) Operation Operand)

- NOT flips (negates) the value of the input
 - $1 \rightarrow 0 \text{ or } 0 \rightarrow 1$
 - not operand
 - ~ operand
 - operand

A = 1 B = 0	
not A ~ B	→ C → 1
not (not A)	→ 1
~ A -2	<mark>→</mark> 1

NOT		
А	Not A	
0	1	
1	0	

- OR evaluates as 1(T) if either input is 1 (T)
 - op1 or op2
 - op1 | op1
 - op1 + op2

A = 1		
B = 0		
C = 1		
A or B	\rightarrow	1
A C	\rightarrow	1
B + C	\rightarrow	1
(not A)	B →	0

OR			
А	В	A or B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

- NOR evaluates as O(T) if either input is 1 (T)
 - This is the NOT of an OR
 - op1 nor op2
 - op1 | op1
 - op1 + op2

A = 1	
B = 0	
C = 0	
A nor B	
A C	
$\overline{\mathbf{P} + \mathbf{C}}$	

 $\begin{array}{ccc} A \text{ nor } B & \rightarrow & 0 \\ \hline A \mid C & \rightarrow & 0 \\ \hline B + C & \rightarrow & 1 \end{array}$

(not A) | B \rightarrow

NOR			
А	В	A or B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- AND evaluates as 1(T) if both inputs are 1(T)
 - op1 and op2
 - op1 & op2
 - op1op2, (op1)(op2)

A = 1 B = 0 C = 1		
A and B A & C BC	\rightarrow \rightarrow \rightarrow	
A & (not	B)	

AND			
А	В	A and B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Always remember, 1 and 0 are abstractions The actual values on the wires are V_{DD} and Gnd

7

 \rightarrow

- NAND evaluates as O(F) if both inputs are 1(T)
 - This is the NOT of an AND
 - op1 nand op2
 - op1 & op2
 - op1op2, (op1)(op2)

A = 1	
B = 0	
C = 1	
A nand	$B \rightarrow$
A & C	\rightarrow
BC	\rightarrow
A & (no	$(B) \rightarrow$

1

0

1

0

NAND				
А	В	A and B		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

- XOR evaluates as 1(T) if an odd number of inputs are 1(T)
 - op1 xor op2
 - op1 ⊗ op2

A = 1 B = 0	
C = 1	
A xor B →	1
$A \otimes C \rightarrow$	0
$A \otimes (not B) \rightarrow$	0

XOR				
А	В	A xor B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- XNOR evaluates as O(F) if an odd number of inputs are 1(T)
 - This is the NOT of an XOR
 - op1 xnor op2
 - op1 op2
 - A = 1 B = 0 C = 1

A xnor B	\rightarrow	0
A⊙C	\rightarrow	1
$\overline{A\otimesC}$	\rightarrow	1

 $A \odot (\text{not B}) \rightarrow 1$

XNOR			
А	В	A xor B	
0	0	1	
0	1	0	
1	0	0	
1	1	1	