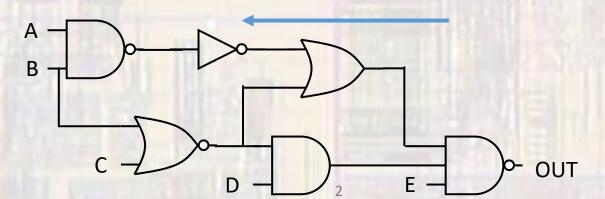
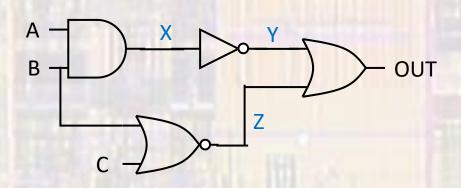

Digital Logic Evaluation Gates

Last updated 10/10/24


These slides show how to evaluate digital logic circuits via truth tables

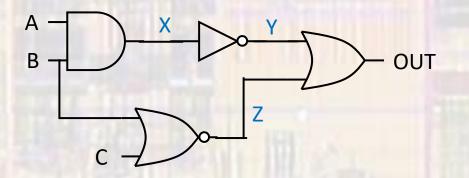
Digital Logic Evaluation – Gates

 Circuits are evaluated from input to output when creating truth tables



 Circuits are evaluated from output to input when creating logic expressions

Digital Logic Evaluation – Gates


- Logic Evaluation Gates
 - Truth Table Process
 - 1. Label all intermediate nodes
 - 2. Create a truth table that includes all inputs, intermediate nodes and the output working from input to output
 - 3. Fill in the table 1 step at a time working from inputs to output

с	В	А	X (AB)	Υ (X)	$\frac{Z}{(B+C)}$	OUT (Y+Z)
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	0	1
0	1	1	1	0	0	0
1	0	0	0	1	0	1
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	1	0	0	0

Digital Logic Evaluation – Gates

- Logic Evaluation Gates
 - Logic Expression Process
 - 1. Label all intermediate nodes
 - 2. Starting at the output write the single gate logic expression
 - 3. Working from output toward input substitute each new level's logic gate expression
 - 4. Reduce as desired

Out = Y + Z Out = (\overline{X}) + (C + B) Out = (\overline{AB}) + $(\overline{C + B})$

Reduction (covered elsewhere) Out = $\overline{A} + \overline{B} + \overline{BC}$ OUT = $\overline{A} + \overline{B}$