Last updated 12/18/24

- Specialized programming languages used to describe the structure, design, and operation of digital and electronic systems
 - Typically used to design Integrated circuits (ICs) and fieldprogrammable gate arrays (FPGAs)
 - Allow designers to model hardware components at different levels of abstraction
 - Behavioral, register-transfer level (RTL), and structural
 - Enable simulation of digital designs to verify their functionality
 - Enable synthesis of digital designs to generate hardware for implementation on devices
 - Designed for concurrent execution
 - Reflecting the parallel nature of hardware components

- Early versions
 - Mid 1980's
 - Focused on hardware description and simulation
 - VHDL
 - VHSIC Hardware Description Language
 - Very High Speed Integrated Circuit Hardware Description Language
 - Developed in a DOD/Corporate collaboration
 - Verilog
 - Verification Logic → verilog
 - Developed by Gateway Design Automation
 - Both have since been made public and are covered by IEEE standards
 - Both are still in use today

Advances

- Private companies created tools to synthesize logic from the VHDL descriptions
 - Once synthesis was introduced the language was effectively broken into 2 parts
 - Synthesizable VHDL
 - Un-synthesizable VHDL
- Additional signal types and libraries were added
- Support for analog hardware was added
- Support for system level abstractions was added

Current status

- Dozens of HDLs exist today a handful are widely used
- VHDL
 - Used by DOD/Government contractors
 - Common in industrial manufacturers
- Verilog
 - Similar capabilities to VHDL but more concise
 - Commonly used by commercial/consumer developers
- System Verilog
 - Verilog with additional Object-Oriented hardware constructs
- SystemC
 - C++ (object oriented) class library with objects designed to simulate and synthesize logic systems
 - Especially effective for very large/complex systems
 - Supports hardware/software interaction

- Synthesizable constructs
 - Code that can be converted to hardware
 - Concurrent logic
 - Sequential logic (processes with edge detection)
 - Structural code
- Un-synthesizable constructs
 - Code that cannot be converted to hardware
 - Allowed for simulation, descriptive or compilation purposes
 - Time wait, delay
 - Loops while, for, ...
 - Initial conditions