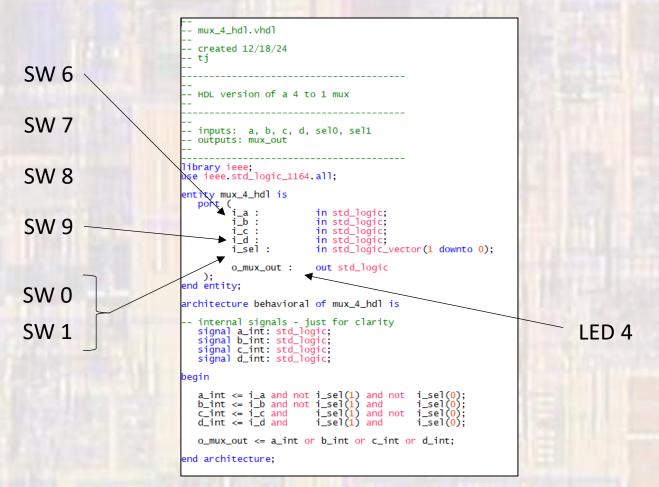

Last updated 1/14/25

- Verification via Hardware (DE10)
 - 1. Create the VHDL
 - 2. Verify the design via simulation
 - see the VHDL Simulation University Waveforms slides
 - 3. Plan the DE10 locations for each pin on the schematic
 - 4. Map the VHDL pins to DE10 inputs and outputs
 - 5. Compile the design
 - 6. Download the design to the DE10
 - 7. Verify the design

3) Plan the DE10 locations for each pin on the schematic



SW and LED

© ti

CPE 1500 3

3) Plan the DE10 locations for each pin on the schematic

CPE 1500

4) Map the schematic pins to DE10 inputs and outputs

sel0	
sel1	

a b c

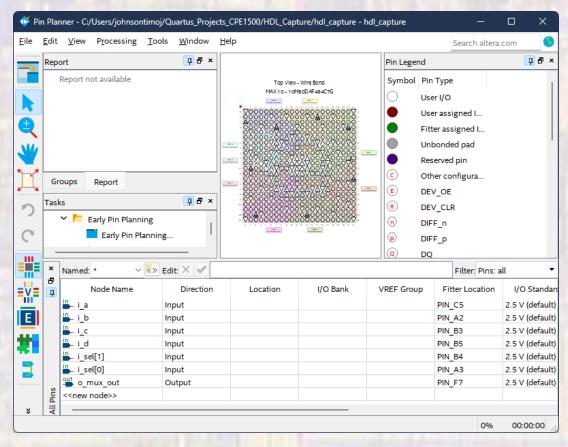
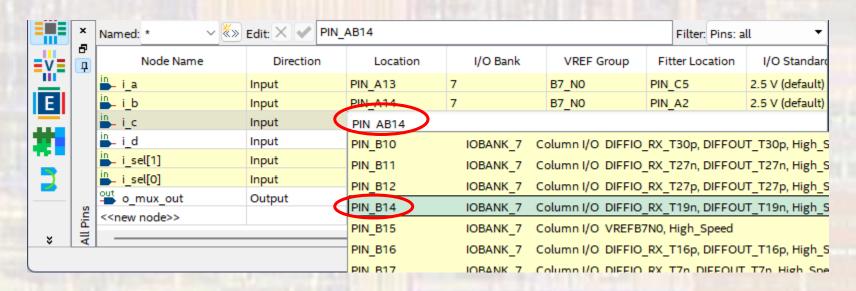

Table 3-4 Pin Assignment of Slide Switches				
Signal Name	FPGA Pin No.	Description	I/O Standard	
SW0	PIN_C10	Slide Switch[0]	3.3-V LVTTL	
SW1	PIN_C11	Slide Switch[1]	3.3-V LVTTL	
SW2	PIN_D12	Slide Switch[2]	3.3-V LVTTL	
SW3	PIN_C12	Slide Switch[3]	3.3-V LVTTL	
SW4	PIN_A12	Slide Switch[4]	3.3-V LVTTL	
SW5	PIN_B12	Slide Switch[5]	3.3-V LVTTL	
SW6	PIN_A13	Slide Switch[6]	3.3-V LVTTL	
SW7	PIN_A14	Slide Switch[7]	3.3-V LVTTL	
SW8	PIN_B14	Slide Switch[8]	3.3-V LVTTL	
SW9	PIN F15	Slide Switch[9]	3.3-V LVTTL	

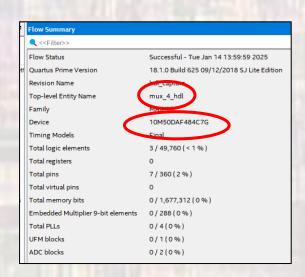
Table 3-5 Pin Assignment of LEDs

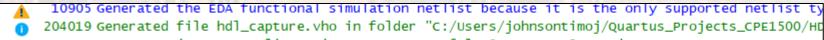
Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR0	PIN_A8	LED [0]	3.3-V LVTTL
LEDR1	PIN_A9	LED [1]	3.3-V LVTTL
LEDR2	PIN_A10	LED [2]	3.3-V LVTTL
LEDR3	PIN_B10	LED [3]	3.3-V LVTTL
LEDR4	PIN_D13	LED [4]	3.3-V LVTTL
LEDR5	PIN_C13	LED [5]	3.3-V LVTTL
LEDR6	PIN_E14	LED [6]	3.3-V LVTTL
LEDR7	PIN_D14	LED [7]	3.3-V LVTTL
LEDR8	PIN_A11	LED [8]	3.3-V LVTTL
LEDR9	PIN_B11	LED [9]	3.3-V LVTTL

mux_out


- 4) Map the schematic pins to DE10 inputs and outputs
 - Assignments → Pin Planner

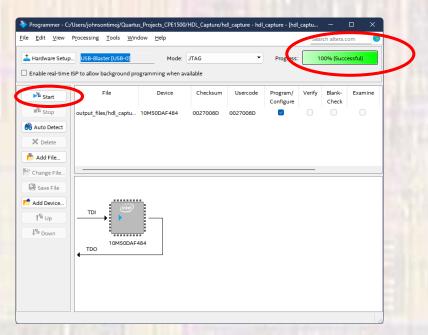
© ti


4) Map the schematic pins to DE10 inputs and outputs


- Double click on the location column for a pin
- Select the expand arrow
- Scroll until the desired pin is found and select it
- Close the Pin Planner when finished

5) Compile the design

- Save
- Right click on the design and select Set as Top-Level Entity
- Processing → Start Compilation
- Verify success



Quartus Prime EDA Netlist Writer was successful. <u>O errors</u>, 3 warnings

293000 Quartus Prime Full Compilation was successful 0 errors, 19 warnings

6) Download the design to the DE10

- Plug the DE10 board into your laptop USB port
 - Should be lots of flashing lights
- Tools → Programmer
 - The USB Blaster interface should have been setup when you setup Quartus – see Quartus Setup Slides if it is not visible
- Start

7) Verify the design

- Choose a value for SW1 and SW0 (SEL(1) and SEL(0))
- Verify only the associated SW(9-6) toggle the LED on/off