Last updated 1/10/25

- Goals:
 - Setup desired SW: Quartus, Waveforms
 - Read Schematics, wire breadboards and use AD2
 - Use simple passive components

This lab does not require an understanding of how circuits work – you just need to implement the provided circuits

- Schematic:
 - A schematic is a graphical representation of a design
 - Uses standard symbols to represent electronic Components (parts)
 - Components are connected through Wires
 - External connections are implemented with Pins
- Quartus:
 - Quartus is a software tool that can be used to:
 - Create logic schematics
 - Simulate logic schematics
 - Convert logic schematics to hardware
 - Convert a hardware description to logic to be simulated and implemented in hardware

• AD2

- Analog Discovery 2
- A hardware tool that can act as many tools used in electronic test and measurement

- Waveforms:
 - A software tool to operate the AD2 benchtop in a box tool
- Breadboard:
 - Also called a proto-board
 - A pre-configured board with push-in connections and underlying wiring to allow electronic circuits to be wired easily
- Passive Component:
 - An electronic component that does not require a power source to be used
 - Note: while passive components do not require power sources, any circuit they are used in ultimately requires a power source somewhere

© tj

- Pre-Lab Process
 - Quartus Setup
 - Follow the directions in the Quartus Setup slides
 - AD2 Setup
 - Follow the directions in the Analog Discovery II slides
 - Breadboard Setup
 - Follow the directions in the Proto Board Setup slides

- Lab Process
 - Review the Common Component and LED Basics slides at the top of the Lab Page
 - Recognize and determine values for resistors and capacitors
 - Determine the correct orientation for wiring up an LED
 - Wire up the Lab 1 Resistor Divider schematic on the breadboard based on the specified components and connections
 - Review the Analog Discovery II Usage slides
 - Power Supplies
 - Voltmeter
 - Scope
 - Wavegen
 - Apply the specified inputs and plot/record the measured outputs
 - Repeat for part2 and part3

NOTE: You do not need to understand how these circuits work