Last updated 1/29/25

- Goal: Walk through most of the Digital Logic design process
 - Create, Simulate, Implement, and Validate a design
 - Using Quartus for Design Capture and Simulation
 - Implement and Validate using the DE10 FPGA
 - Why does the goal say 'most'
 - In this lab we are not truly creating a design, we are just copying an already designed schematic
 - At this point in the class you are not expected to understand the logic design you are implementing

- Project:
 - Quartus uses projects to collect all of the files associated with a design
- Schematic:
 - A schematic is a graphical representation of a design
 - Uses standard symbols to represent electronic Components (parts)
 - Components are connected through Wires
 - External connections are implemented with Pins
- Simulation:
 - A simulation is a computer program used to test your design before you commit it to hardware
 - Your design is converted to a mathematical model (synthesized)
 - You provide a series of input waveforms and the simulator provides associated output values

- Implement:
 - Create a hardware based version of your design
 - This could involve a breadboard, IC components and jumper wires
 - This could be done using a configurable piece of hardware (FPGA)
 - Inputs can be connected to: wires to VDD and Gnd, an Analog Discovery waveform output, built in switches, ...
 - Outputs can be viewed with: an Analog Discovery scope or voltmeter, built in LEDs, ...
- Validate:
 - Compare the actual results to the expected results

- Process
 - Create a new Project Lab2_Part1
 - Follow the directions in the Quartus Project Setup slides
 - Show your professor your Quartus project before proceeding
 - Create a new Schematic for part 1
 - Use the Lab2 Multiplexer Schematic
 - Note: this is identical to the Capture_Demo schematic
 - Yours should be called lab2_mux_sch.bdf
 - Follow the directions in the Schematic Generation slides
 - Simulate your schematic (design)
 - Follow the directions in the Schematic Simulation via University Waveform Viewer slides
 - Use the design name (lab2_mux_sch_vwf.vwf)
 - You will need to reference the University Waveform Viewer Input Setup slides to create your input waveforms
 - Validate your schematic (design)
 - Follow the directions in the Schematic to DE10 slides
 - Demo your working design
 - Repeat for the Lab2 Mystery Schematic

- DE10 Lite
 - The DE10 Lite device is a re-configurable piece of hardware that can implement your logic without you needing to wire up a breadboard
 - It includes additional components to exercise (test) your logic
 - We will use switches and buttons as inputs
 - We will use LEDs as outputs
 - Refer to the DE10 Lite User Manual for more details

*** NEVER handle your DE10 Lite board by the bottom *** This can cause it to fail to work Always handle it by the edges

© tj